【題目】如圖,AB為⊙O的直徑,D為 的中點(diǎn),連接OD交弦AC于點(diǎn)F,過(guò)點(diǎn)D作DE∥AC,交BA的延長(zhǎng)線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)連接CD,若OA=AE=4,求四邊形ACDE的面積.
【答案】
(1)證明:∵D為 的中點(diǎn),
∴OD⊥AC,
∵AC∥DE,
∴OD⊥DE,
∴DE是⊙O的切線
(2)解:連接DC,
∵D為 的中點(diǎn),
∴OD⊥AC,AF=CF,
∵AC∥DE,且OA=AE,
∴F為OD的中點(diǎn),即OF=FD,
在△AFO和△CFD中,
∴△AFO≌△CFD(SAS),
∴S△AFO=S△CFD,
∴S四邊形ACDE=S△ODE
在Rt△ODE中,OD=OA=AE=4,
∴OE=8,
∴DE= =4 ,
∴S四邊形ACDE=S△ODE= ×OD×DE= ×4×4 =8 .
【解析】(1)欲證明DE是⊙O的切線,只要證明AC⊥OD,ED⊥OD即可.(2)由△AFO≌△CFD(SAS),推出S△AFO=S△CFD , 推出S四邊形ACDE=S△ODE , 求出△ODE的面積即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料:
在平面幾何中,我們學(xué)過(guò)兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱(chēng)直線l1與直線l2互相平行.
解答下面的問(wèn)題:
(1)求過(guò)點(diǎn)P(1,4)且與已知直線y=-2x-1平行的直線的函數(shù)表達(dá)式,并畫(huà)出直線l的圖象;
(2)設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B,如果直線:y=kx+t ( t>0)與直線l平行且交x軸于點(diǎn)C,求出△ABC的面積S關(guān)于t的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的文字,解答問(wèn)題:大家知道是無(wú)理數(shù),而無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫(xiě)出來(lái),于是小明用﹣1來(lái)表示的小數(shù)部分,你同意小明的表示方法嗎?事實(shí)上,小明的表示方法是有道理的,因?yàn)?/span>的整數(shù)部分是1,將這個(gè)數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:
∵22<()2<32,即2<<3,∴的整數(shù)部分為2,小數(shù)部分為(﹣2).
請(qǐng)解答:
(1)的整數(shù)部分是 ,小數(shù)部分是
(2)如果的小數(shù)部分為a, 的整數(shù)部分為b,求a+b﹣的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育課上全班男生進(jìn)行了百米測(cè)試,達(dá)標(biāo)成績(jī)?yōu)?/span>14秒,下面是第一小組8名男生的成績(jī)記錄,其中“+”表示成績(jī)大于14秒,“-”表示成績(jī)小于14秒.
(1)求這個(gè)小組男生百米測(cè)試的達(dá)標(biāo)率是多少?
(2)求這個(gè)小組8名男生的平均成績(jī)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一個(gè)大圓盤(pán)中,鑲嵌著四個(gè)大小一樣的小圓盤(pán),已知大小圓盤(pán)的半徑都是整數(shù),陰影部分的面積為5πcm2 , 請(qǐng)你求出大小兩個(gè)圓盤(pán)的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為實(shí)現(xiàn)教育均衡發(fā)展,打造新優(yōu)質(zhì)學(xué)校,瑤海區(qū)計(jì)劃對(duì)A、B兩類(lèi)薄弱學(xué)校全部進(jìn)行改造,根據(jù)預(yù)算,共需資金1575萬(wàn)元.改造一所A類(lèi)學(xué)校和兩所B類(lèi)學(xué)校共需資金230萬(wàn)元;改造兩所A類(lèi)學(xué)校和一所B類(lèi)學(xué)校共需資金205萬(wàn)元,求改造一所A類(lèi)學(xué)校和一所B類(lèi)學(xué)校所需的資金分別是多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小張騎車(chē)往返于甲、乙兩地,距甲地的路程y(千米)與時(shí)間x(時(shí))的函數(shù)圖象如圖所示.
(1)小張?jiān)诼飞贤A?/span> 小時(shí),他從乙地返回時(shí)騎車(chē)的速度為 千米/時(shí);
(2)小王與小張同時(shí)出發(fā),按相同路線勻速前往乙地,距甲地的路程y(千米)與時(shí)間x(時(shí))的函數(shù)關(guān)系式為y=10x+10.請(qǐng)作出此函數(shù)圖象,并利用圖象回答:小王與小張?jiān)谕局泄蚕嘤?/span> 次;
(3)請(qǐng)你計(jì)算第三次相遇的時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com