【題目】關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k為常數(shù).
(1)求證:無論k為何值,方程總有兩個不相等實數(shù)根;
(2)若原方程的一根大于3,另一根小于3,求k的最大整數(shù)值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角三角板放在平面直角坐標(biāo)系中,直角邊垂直軸,垂足為,已知,點,,均在反比例函數(shù)的圖象上,分別作軸于,軸于,延長,交于點,且點為的中點.
求點的坐標(biāo);
求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形ABCD中,AB∥CD,∠D=90°,BE平分∠ABC,交CD于點E,F(xiàn)是AB的中點,聯(lián)結(jié)AE、EF,且AE⊥BE.
求證:(1)四邊形BCEF是菱形;
(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛準(zhǔn)備用一段長 44 米的籬笆圍成三角形,用于養(yǎng)雞。已知一條邊長 x 米,第二條邊是第一條邊的 3 倍多 6 米。
(1)若能圍成一個等腰三角形,求三邊長
(2)若第一邊長最短,寫出 x 的取值范圍 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請參照下面探究過程,完成所提出的問題.
(1)如圖1,在△ABC中,點O是∠ABC和∠ACB平分線的交點.
若∠A=30°,則∠BOC= ;
若∠A=α,則∠BOC= (用含α的代數(shù)式表示)
(2)如圖2,在四邊形ABDC中,點O是∠ABD和∠ACD外角平分線的交點,寫出∠A、∠D與∠O之間的數(shù)量關(guān)系,并說明理由;
(3) 如圖3,在四邊形ABDC中,∠ABD和∠ACD外角的n等分線交于O,使∠ABD=n∠ABO,∠ACE=n∠ACO.直接寫出∠A、∠D和∠O之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=5cm,點P從點C出發(fā)沿線段CA以每秒2cm的速度運動,同時點Q從點B出發(fā)沿線段BC以每秒1cm的速度運動.設(shè)運動時間為t秒(0<t<5).
(1)填空:AB= cm;
(2)t為何值時,△PCQ與△ACB相似;
(3)如圖2,以PQ為斜邊在異于點C的一側(cè)作Rt△PEQ,且,連結(jié)CE,求CE.(用t的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次促銷活動中,某商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖,轉(zhuǎn)盤被平均分成份),并規(guī)定:顧客每購買元的商品,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會.如果轉(zhuǎn)盤停止后,指針正好對準(zhǔn)紅色、黃色、綠色區(qū)域,那么顧客就可以分別獲得元、元、元的購物券,憑購物券可以在該商場繼續(xù)購物.如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤,那么可以直接獲得購物券元.
(1)求每轉(zhuǎn)動一次轉(zhuǎn)盤所獲購物券金額的平均數(shù);
(2)如果你在該商場消費元,你會選擇轉(zhuǎn)轉(zhuǎn)盤還是直接獲得購物券?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點的位置如圖所示
(1)請畫出△ABC關(guān)于y軸對稱的△A′B′C′;(其中A′、B′、C′分別是A、B、C的對應(yīng)點,不寫畫法)
(2)直接寫出A′B′C′三點的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.
(1)求證:CF是⊙O的切線;
(2)若∠F=30°,EB=6,求圖中陰影部分的面積(結(jié)果保留根號和π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com