【題目】疫情期間,某銷售商在網(wǎng)上銷售A、B兩種型號(hào)的電腦“手寫板”,其進(jìn)價(jià)、售價(jià)和每日銷量如下表所示:
進(jìn)價(jià)(元/個(gè)) | 售價(jià)(元/個(gè)) | 銷量(個(gè)/日) | |
A型 | 400 | 600 | 200 |
B型 | 800 | 1200 | 400 |
根據(jù)市場(chǎng)行情,該銷售商對(duì)A型手寫板降價(jià)銷售,同時(shí)對(duì)B型手寫板提高售價(jià),此時(shí)發(fā)現(xiàn)A型手寫板每降低5元就可多賣1個(gè),B型手寫板每提高5元就少賣1個(gè).銷售時(shí)保持每天銷售總量不變,設(shè)其中A型手寫板每天多銷售x個(gè),每天獲得的總利潤(rùn)為y元.
(1)求y與x之間的函數(shù)關(guān)系式,并直接寫出x的取值范圍;
(2)要使每天的利潤(rùn)不低于212000元,求出x的取值范圍;
(3)該銷售商決定每銷售一個(gè)B型手寫板,就捐助a元給受“新冠疫情”影響的困難學(xué)生,若當(dāng)30≤x≤40時(shí),每天的最大利潤(rùn)為203400元,求a的值.
【答案】(1);(2);(3)
【解析】
(1)根據(jù)“總利潤(rùn)=A型手寫板利潤(rùn)+B型手寫板利潤(rùn)”即可確定函數(shù)解析式;根據(jù)600-400-5x≥0,1200-800+5x≥0即可確定自變量取值范圍;
(2)把y=212000,代入函數(shù)解析式求出x值,根據(jù)函數(shù)增減性結(jié)合(1)自變量取值,即可求出x的取值;
(3)設(shè)捐款后每天的利潤(rùn)為w元,則w=-10x2+800x+200000-(400-x)a,即可得到w與x的關(guān)系式,確定對(duì)稱軸為,結(jié)合確定對(duì)稱軸取值范圍,結(jié)合拋物線的性質(zhì)即可求出當(dāng)x=40時(shí),w最大,進(jìn)而求出a.
解:(1)由題意得,y=(600-400-5x)(200+x)+(1200-800+5x)(400-x)
=-10x2+800x+200000,(0≤x≤40且x為整數(shù))
(寫0<x≤40且x為整數(shù),不扣分)
(2)x的取值范圍為20≤x≤40.
理由如下:y=-10x2+800x+200000=-10(x-40)2+216000,
當(dāng)y=212000時(shí),-10(x-40)2+216000=212000,
(x-40)2=4000,x-40=±20,
解得:x=20或x=60.
要使y≥212000,
得20≤x≤60;
∵0≤x≤40,
∴20≤x≤40;
(3)設(shè)捐款后每天的利潤(rùn)為w元,則
w=-10x2+800x+200000-(400-x)a=-10x2+(800+a)x+200000-400a,
對(duì)稱軸為,
∵0<a≤100,
∴,
∵拋物線開口向下,當(dāng)30≤x≤40時(shí),w隨x的增大而增大,
當(dāng)x=40時(shí),w最大,
∴-16000+40(800+a)+200000-400a=203400,
解得a=35.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)A、點(diǎn)B在直線的兩側(cè).
(點(diǎn)A到直線的距離小于點(diǎn)B到直線的距離).
如圖, (1)作點(diǎn)B關(guān)于直線的對(duì)稱點(diǎn)C; (2)以點(diǎn)C為圓心,的長(zhǎng)為半徑作,交于點(diǎn)E; (3)過點(diǎn)A作的切線,交于點(diǎn)F,交直線于點(diǎn)P; (4)連接、. |
根據(jù)以上作圖過程及所作圖形,下列四個(gè)結(jié)論中:
①是的切線; ②平分;
③; ④.
所有正確結(jié)論的序號(hào)是___________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在頂點(diǎn)為P的拋物線 的對(duì)稱軸l上取 ,過A作 交拋物線于B,C兩點(diǎn)(B在C左側(cè)),點(diǎn)和點(diǎn)A關(guān)于點(diǎn)P對(duì)稱,過作 ,又分別過B,C作 ,垂足為E,D,在這里我們把點(diǎn)A叫拋物線的焦點(diǎn),BC叫拋物線的直徑,矩形BCDE叫拋物線的焦點(diǎn)矩形.
(1)直接寫出拋物線 的焦點(diǎn)坐標(biāo)及其直徑;
(2)求拋物線 的焦點(diǎn)坐標(biāo)及其直徑;
(3)已知拋物線的直徑為 ,求a的值;
(4)①已知拋物線 的焦點(diǎn)矩形的面積為2,求a的值;
②直接寫出拋物線的焦點(diǎn)矩形與拋物線 有兩個(gè)公共點(diǎn)時(shí)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊BO在x軸的負(fù)半軸上,,頂點(diǎn)C的坐標(biāo)為,x反比例函數(shù)的圖象與菱形對(duì)角線AO交于點(diǎn)D,連接BD,當(dāng)軸時(shí),k的值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初三年級(jí)教師對(duì)試卷講評(píng)課中學(xué)生參與的深度和廣度進(jìn)行評(píng)價(jià)調(diào)查,其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項(xiàng).評(píng)價(jià)組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制了如圖兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給信息解答下列問題:
(1)在這次評(píng)價(jià)中,一共抽查了 名學(xué)生;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)如果全市有12000名初中學(xué)生,那么在試卷講評(píng)課中,獨(dú)立思考的學(xué)生約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用A、B兩種機(jī)器人搬運(yùn)大米,A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)20袋大米,A型機(jī)器人搬運(yùn)700袋大米與B型機(jī)器人搬運(yùn)500袋大米所用時(shí)間相等.求A、B型機(jī)器人每小時(shí)分別搬運(yùn)多少袋大米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:在平面內(nèi),如果一個(gè)圖形繞一個(gè)定點(diǎn)旋轉(zhuǎn)一定的角度α(0°<α≤180°)后能與自身重合,那么就稱這個(gè)圖形是旋轉(zhuǎn)對(duì)稱圖形,轉(zhuǎn)動(dòng)的這個(gè)角度α稱為這個(gè)圖形的一個(gè)旋轉(zhuǎn)角.例如:正方形繞著兩條對(duì)角線的交點(diǎn)O旋轉(zhuǎn)90°或180°后,能與自身重合(如圖1),所以正方形是旋轉(zhuǎn)對(duì)稱圖形,且有兩個(gè)旋轉(zhuǎn)角.根據(jù)以上規(guī)定,回答問題:
(1)下列圖形是旋轉(zhuǎn)對(duì)稱圖形,但不是中心對(duì)稱圖形的是________;
A.矩形 B.正五邊形 C.菱形 D.正六邊形
(2)下列圖形中,是旋轉(zhuǎn)對(duì)稱圖形,且有一個(gè)旋轉(zhuǎn)角是60度的有:________(填序號(hào));
(3)下列三個(gè)命題:①中心對(duì)稱圖形是旋轉(zhuǎn)對(duì)稱圖形;②等腰三角形是旋轉(zhuǎn)對(duì)稱圖形;③圓是旋轉(zhuǎn)對(duì)稱圖形,其中真命題的個(gè)數(shù)有( )個(gè);
A.0 B.1 C.2 D.3
(4)如圖2的旋轉(zhuǎn)對(duì)稱圖形由等腰直角三角形和圓構(gòu)成,旋轉(zhuǎn)角有45°,90°,135°,180°,將圖形補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)45°,得到,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為,連接交直線于點(diǎn),連接.
(1)根據(jù)題意補(bǔ)全圖形;
(2)判斷的形狀,并證明;
(3)連接,用等式表示線段,,之間的數(shù)量關(guān)系,并證明.
溫馨提示:在解決第(3)問的過程中,如果你遇到困難,可以參考下面幾種解法的主要思路.
解法1的主要思路:
延長(zhǎng)至點(diǎn),使,連接,可證,再證是等腰直角三角形.
解法2的主要思路:
過點(diǎn)作于點(diǎn),可證是等腰直角三角形,再證.
解法3的主要思路:
過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn),設(shè),,用含或的式子表示,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com