【題目】如圖所示,在直角坐標系中,矩形的邊在軸上,點在原點,.若矩形以每秒2個單位長度沿軸正方向作勻速運動.同時點從點出發(fā)以每秒1個單位長度沿的路線作勻速運動,當點運動到點時停止運動,矩形也隨之停止運動.設點運動時間為(秒).
(1)當時,求出點的坐標;
(2)若的面積為,試求出與之間的函數(shù)關(guān)系式(并寫出相應的自變量的取值范圍).
(3)畫出題(2)所列的函數(shù)的大致圖象.
【答案】(1)(12,3);(2)當0<t≤3時,s=t2;當3<t≤8時,s=3t;當8<t<11時,s=-t2+11t;(3)見解析
【解析】
(1)先判斷出先P在邊BC上,向右移動的單位數(shù),再確定出矩形向右平移的單位數(shù)即可得出結(jié)論;
(2)分三種情況利用三角形的面積公式即可求解.
(3)在同一平面直角坐標系中分別畫出三段函數(shù)在相應自變量范圍內(nèi)的圖像即可.
解:(1)當t=5時,P點從A點運動到BC上,
過點P作PE⊥AD于點E.
此時A點到E點的距離=10,AB+BP=5,
∴BP=2
則PE=AB=3,AE=BP=2
∴OE=OA+AE=10+2=12
∴點P的坐標為(12,3);
(2)分三種情況:
①0<t≤3時,點P在AB上運動,此時OA=2t,AP=t
∴s=×2t×t=t2;
②3<t≤8時,點P在BC上運動,此時OA=2t
∴s=×2t×3=3t;
③8<t<11時,點P在CD上運動,此時OA=2t,AB+BC+CP=t
∴DP=(AB+BC+CD)-(AB+BC+CP)=11-t
∴s=×2t×(11-t)=-t2+11t;
綜上所述,s與t之間的函數(shù)關(guān)系式是:
當0<t≤3時,s=t2;
當3<t≤8時,s=3t;
當8<t<11時,s=-t2+11t;
(3)根據(jù)(2)中三個函數(shù)可得如圖:
科目:初中數(shù)學 來源: 題型:
【題目】(題文)已知直線與拋物線相交于拋物線的頂點和另一點,點在第四象限.
若點,點的橫坐標為,求點的坐標;
過點作軸的平行線與拋物線的對稱軸交于點,直線與軸交于點,若,,求的面積的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場將進貨價為30元的書包以40元售出,平均每月能售出600個,調(diào)查表明:這種書包的售價每上漲1元,其銷售量就減少10個.
(1)為了使平均每月有10000元的銷售利潤,這種書包的售價應定為多少元?
(2)10000元的利潤是否為最大利潤?如果是,請說明理由;如果不是,請求出最大利潤,并指出此時書包的售價為多少元?
(3)請分析并回答售價在什么范圍內(nèi)商家就可以獲得利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】⑴如圖1,點C在線段AB上,點D、E在直線AB同側(cè),∠A=∠DCE=∠CBE,DC=CE.求證:AC=BE.
⑵如圖2,點C在線段AB上,點D、E在直線AB同側(cè),∠A=∠DCE=∠CBE=90°.
①求證:;②連接BD,若∠ADC=∠ABD,AC=3,BC=,求tan∠CDB的值;
⑶如圖3,在△ABD中,點C在AB邊上,且∠ADC=∠ABD,點E在BD邊上,連接CE,∠BCE+∠BAD=180°,AC=3,BC=,CE=,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了“創(chuàng)建文明城市,建設美麗家園”,我市某社區(qū)將轄區(qū)內(nèi)的一塊面積為的空地進行綠化,一部分種草,剩余部分栽花.設種草部分的面積為,種草所需費用(元)與的函數(shù)關(guān)系式為,其大致圖象如圖所示.栽花所需費用(元)與的函數(shù)關(guān)系式為.
(1)求出,的值;
(2)若種花面積不小于時的綠化總費用為(元),寫出與的函數(shù)關(guān)系式,并求出綠化總費用的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,DE分別是邊AB、AC上的點,且AD=CE,則∠ADC+∠BEA=( 。
A.180°B.170°C.160°D.150°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,中,,點為邊上一點,于點,點為中點,的延長線交于點.
(1)求證;;
(2)若,求;
(3)如圖②,若,點為的中點,連接,求證;.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,動點M、N同時從A點出發(fā),點M沿AB以每秒1個單位長度的速度向中點B運動,點N沿折現(xiàn)ADC以每秒2個單位長度的速度向終點C運動,設運動時間為t秒,則△CMN的面積為S關(guān)于t函數(shù)的圖象大致是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著城市化建設的發(fā)展,交通擁堵成為上班高峰時難以避免的現(xiàn)象.為了解龍泉驛某條道路交通擁堵情況,龍泉某中學同學經(jīng)實地統(tǒng)計分析研究表明:當時,車流速度v(千米/小時)是車流密度x(輛/千米)的一次函數(shù).當該道路的車流密度達到220輛/千米時,造成堵塞,此時車流速度為0千米/小時;當車流密度為95輛/千米時,車流速度為50千米/小時.
(1)當時,求車流速度v(千米/小時)與車流密度x(輛/千米)的函數(shù)關(guān)系式;
(2)為使該道路上車流速度大于40千米/小時且小于60千米/小時,應控制該道路上的車流密度在什么范圍內(nèi)?
(3)車流量(輛/小時)是單位時間內(nèi)通過該道路上某觀測點的車輛數(shù),即:車流量=車流速度×車流密度.當時,求該道路上車流量y的最大值.此時車流速度為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com