【題目】如圖1,點(diǎn)E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P,點(diǎn)Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P沿BE→ED→DC 運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1cm/s,設(shè)P,Q出發(fā)t秒時(shí),△BPQ的面積為ycm,已知y與t的函數(shù)關(guān)系的圖形如圖2(曲線OM為拋物線的一部分),則下列結(jié)論:①AD=BE=5cm;②當(dāng)0<t≤5時(shí),;③直線NH的解析式為;④若△ABE與△QBP相似,則t=秒。其中正確的結(jié)論個(gè)數(shù)為( )

A.4
B.3
C.2
D.1

【答案】B
【解析】

據(jù)圖(2)可以判斷三角形的面積變化分為三段,可以判斷出當(dāng)點(diǎn)P到達(dá)點(diǎn)E時(shí)點(diǎn)Q到達(dá)點(diǎn)C,從而得到BC、BE的長(zhǎng)度,再根據(jù)M、N是從5秒到7秒,可得ED的長(zhǎng)度,然后表示出AE的長(zhǎng)度,根據(jù)勾股定理求出AB的長(zhǎng)度,然后針對(duì)各小題分析解答即可.

①根據(jù)圖(2)可得,當(dāng)點(diǎn)P到達(dá)點(diǎn)E時(shí)點(diǎn)Q到達(dá)點(diǎn)C,
∵點(diǎn)P、Q的運(yùn)動(dòng)的速度都是1cm/s,
∴BC=BE=5cm,
∴AD=BE=5(故①正確);
②如圖1,過(guò)點(diǎn)P作PF⊥BC于點(diǎn)F,
根據(jù)面積不變時(shí)△BPQ的面積為10,可得AB=4,
∵AD∥BC,
∴∠AEB=∠PBF,
∴sin∠PBF=sin∠AEB=,
∴PF=PBsin∠PBF=t,
∴當(dāng)0<t≤5時(shí),y=BQPF=tt=t2(故②正確);
③根據(jù)5-7秒面積不變,可得ED=2,
當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)C時(shí),面積變?yōu)?,此時(shí)點(diǎn)P走過(guò)的路程為BE+ED+DC=11,
故點(diǎn)H的坐標(biāo)為(11,0),
設(shè)直線NH的解析式為y=kx+b,
將點(diǎn)H(11,0),點(diǎn)N(7,10)代入可得:,
解得:故直線NH的解析式為:y=-,(故③錯(cuò)誤);
④當(dāng)△ABE與△QBP相似時(shí),點(diǎn)P在DC上,如圖2所示:
∵tan∠PBQ=tan∠ABE=,
=,即=,
解得:t=.(故④正確);
綜上可得①②④正確,共3個(gè).
故選:B.


【考點(diǎn)精析】本題主要考查了一次函數(shù)的圖象和性質(zhì)和二次函數(shù)的概念的相關(guān)知識(shí)點(diǎn),需要掌握一次函數(shù)是直線,圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn);一般地,自變量x和因變量y之間存在如下關(guān)系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱(chēng)y為x的二次函數(shù)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九年級(jí)(3)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查整理出某種商品在第x天(1≤x≤90,且x為整數(shù))的售價(jià)與銷(xiāo)售量的相關(guān)信息如下.已知商品的進(jìn)價(jià)為30元/件,設(shè)該商品的售價(jià)為y(單位:元/件),每天的銷(xiāo)售量為p(單位:件),每天的銷(xiāo)售利潤(rùn)為w(單位:元).

時(shí)間x(天)

1

30

60

90

每天銷(xiāo)售量p(件)

198

140

80

20


(1)求出w與x的函數(shù)關(guān)系式;
(2)問(wèn)銷(xiāo)售該商品第幾天時(shí),當(dāng)天的銷(xiāo)售利潤(rùn)最大?并求出最大利潤(rùn);
(3)該商品在銷(xiāo)售過(guò)程中,共有多少天每天的銷(xiāo)售利潤(rùn)不低于5600元?請(qǐng)直接寫(xiě)出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,C=90°,ABC=60°,BD平分∠ABC , 若AD=6,則CD是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=20°,∠ABC與∠ACB的角平分線交于D1 , ∠ABD1與∠ACD1的角平分線交于點(diǎn)D2 , 依此類(lèi)推,∠ABD4與∠ACD4的角平分線交于點(diǎn)D5 , 則∠BD5C的度數(shù)是( 。

A.24°
B.25°
C.30°
D.36°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò)A(﹣1,0),B(5,0),C(0,- )三點(diǎn).

(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱(chēng)軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y=x2﹣2x+1的頂點(diǎn)為P,與y軸的交點(diǎn)為Q,點(diǎn)F(1, ).
(1)求點(diǎn)P,Q的坐標(biāo);
(2)將拋物線C向上平移得到拋物線C′,點(diǎn)Q平移后的對(duì)應(yīng)點(diǎn)為Q′,且FQ′=OQ′.
①求拋物線C′的解析式;
②若點(diǎn)P關(guān)于直線Q′F的對(duì)稱(chēng)點(diǎn)為K,射線FK與拋物線C′相交于點(diǎn)A,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A,B是線段EF上兩點(diǎn),EA:AB:BF=1:2:3,M,N分別為EA,BF的中點(diǎn),且MN=8cm,則EF長(zhǎng)(

A.9cm
B.10cm
C.11cm
D.12cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC的頂點(diǎn)B在反比例函數(shù) 的圖象上,AC邊在x軸上,已知∠ACB=90°,∠A=30°,BC=4,則圖中陰影部分的面積是(
A.12
B.4
C.12-3
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】?jī)蓚(gè)反比例函數(shù)y= (k>1)和y= 在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在y= 的圖象上,PC⊥x軸于點(diǎn)C,交y= 的圖象于點(diǎn)A,PD⊥y軸于點(diǎn)D,交y= 的圖象于點(diǎn)B,BE⊥x軸于點(diǎn)E,當(dāng)點(diǎn)P在y= 圖象上運(yùn)動(dòng)時(shí),以下結(jié)論:①BA與DC始終平行;②PA與PB始終相等;③四邊形PAOB的面積不會(huì)發(fā)生變化;④△OBA的面積等于四邊形ACEB的面積.其中一定正確的是(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案