【題目】在△ABC中,AD為BC邊上的中線,E為AD上一動(dòng)點(diǎn),設(shè)DE=nEA,連接CE并延長(zhǎng),交AB于點(diǎn)F.
(1)嘗試探究:如圖1,當(dāng)∠BAC=90°,∠B=30°,DE=EA時(shí),BF,BA之間的數(shù)量關(guān)系是 ;
(2)類比延伸:如圖2,當(dāng)△ABC為銳角三角形,DE=EA時(shí),(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;
(3)拓展遷移:如圖3,當(dāng)△ABC為銳角三角形,DE=nEA時(shí),請(qǐng)直接寫(xiě)出BF,BA之間的數(shù)量關(guān)系.
【答案】(1);(2)仍然成立,見(jiàn)解析;(3)
【解析】
(1)嘗試探究:過(guò)點(diǎn)作,交于,可證,
, ,可得 ,可證,
可得BF,BA之間的數(shù)量關(guān)系;
(2)類比延伸:過(guò)點(diǎn)作,交于,可證,,可得,可證,可得之間的數(shù)量關(guān)系;
(3)拓展遷移:過(guò)點(diǎn)作,交于,由平行線分線段成比例可得,可得,即可求之間的數(shù)量關(guān)系.
解:(1)嘗試探究
如圖,過(guò)點(diǎn)作,交于
∵是中線,
∴
∵,
∴,
∴
∴
∴
∴
∴
(2)類比延伸:
結(jié)論仍然成立,
理由如下:
如圖,過(guò)點(diǎn)作,交于
∵是中線,
∴
∵,
∴,
∴
∴
∴
∴
∴
(3)拓展遷移
如圖,過(guò)點(diǎn)作,交于
∵,且
∴
∴
∵
∴
∴
∴
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+3與x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線y=ax2+x+c經(jīng)過(guò)B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)如圖,點(diǎn)E是直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△BEC面積最大時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo)和△BEC面積的最大值?
(3)在(2)的結(jié)論下,過(guò)點(diǎn)E作y軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對(duì)稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、Q、A、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E、F、G、H分別在矩形ABCD的邊AB、BC、CD、DA(不包括端點(diǎn))上運(yùn)動(dòng),且滿足,.
(1)求證:;
(2)試判斷四邊形EFGH的形狀,并說(shuō)明理由.
(3)請(qǐng)?zhí)骄克倪呅?/span>EFGH的周長(zhǎng)一半與矩形ABCD一條對(duì)角線長(zhǎng)的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”期間,新華商場(chǎng)貼出促銷(xiāo)海報(bào)在商場(chǎng)活動(dòng)期間,王莉同學(xué)隨機(jī)調(diào)查了部分參與活動(dòng)的顧客,并將調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)王莉同學(xué)隨機(jī)調(diào)查的顧客有多少人?
(2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若商場(chǎng)每天約有2000人次摸獎(jiǎng),請(qǐng)估算商場(chǎng)一天送出的購(gòu)物券總金額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在菱形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿折線B→C→D→B運(yùn)動(dòng).設(shè)點(diǎn)P經(jīng)過(guò)的路程為x,△ABP的面積為y.把y看作x的函數(shù),函數(shù)的圖象如圖②所示,則圖②中的b等于( )
A. B. C. 5D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】記:P1=﹣2,P2=(﹣2)×(﹣2),P3=(﹣2)×(﹣2)×(﹣2),…,.
(1)計(jì)算P7÷P8的值;
(2)計(jì)算2P2019+P2020的值;
(3)猜想2Pn與Pn+1的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片和重合放置,其中,.
(1)操作發(fā)現(xiàn)
如圖2,固定,使繞點(diǎn)旋轉(zhuǎn),當(dāng)點(diǎn)恰好落在邊上時(shí),填空:
①線段與的位置關(guān)系是______;
②設(shè)的面積為,的面積為,則與的數(shù)量關(guān)系是______
(2)猜想論證
當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖3所示的位置時(shí),小明猜想1.中與的數(shù)量關(guān)系仍然成立,并嘗試分別作出了和中、邊上的高,請(qǐng)你證明小明的猜想.
(3)拓展探究
已知∠ABC=60°,點(diǎn)是角平分線上一點(diǎn),,交于點(diǎn)(如圖4).若在射線上存在點(diǎn),使,請(qǐng)求出相應(yīng)的的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)上級(jí)教委的“海航招飛”號(hào)召,某校從九年級(jí)應(yīng)屆男生中抽取視力等生理指標(biāo)合格的部分學(xué)生進(jìn)行了文化課初檢,教務(wù)處負(fù)責(zé)同志將測(cè)測(cè)試結(jié)果分為四個(gè)等級(jí):甲、乙、丙、丁,然后將相關(guān)數(shù)據(jù)整理為兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)依據(jù)相關(guān)信息解答下列問(wèn)題:
(1)本次參加文化課初檢的男生人數(shù)為 ;
(2)扇形圖中m的數(shù)值為 ,把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)據(jù)統(tǒng)計(jì),全省生理指標(biāo)過(guò)關(guān)的九年級(jí)男生有2400名左右,若規(guī)定文化課等級(jí)為“甲”“乙”的可進(jìn)行文化課二檢,請(qǐng)估計(jì)進(jìn)入二檢的男生有 ;
(4)本次抽檢進(jìn)入“甲”等的4名男生中九(1)、九(2)班各占2名,若從“甲”等學(xué)生中隨機(jī)抽取兩名男生進(jìn)行調(diào)研,請(qǐng)用樹(shù)形圖表示抽到的兩名男生恰為九(1)班的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】[知識(shí)回顧]
七年級(jí)學(xué)習(xí)代數(shù)式求值時(shí),遇到這樣一類題 “代數(shù)式的值與的取值無(wú)關(guān),求的值”,通常的解題方法是:把看作字母,看作系數(shù)合并同類項(xiàng),因?yàn)榇鷶?shù)式的值與的取值無(wú)關(guān),所以含項(xiàng)的系數(shù)為,即原式,所以,則.
[理解應(yīng)用]
若關(guān)于的多項(xiàng)式的值與的取值無(wú)關(guān),試求的值:
若一次函數(shù)的圖像經(jīng)過(guò)某個(gè)定點(diǎn),則該定點(diǎn)坐標(biāo)為 ;
[能力提升]
張如圖1的小長(zhǎng)方形,長(zhǎng)為,寬為,按照?qǐng)D2方式不重疊地放在大矩形內(nèi),大矩形中未被覆蓋的兩個(gè)部分(圖中陰影部分) ,設(shè)右上角的面積為,左下角的面積為,當(dāng)的長(zhǎng)變化時(shí),的值始終保持不變,求與的等量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com