【題目】如圖,AOB為等腰三角形,頂點A的坐標(2,),底邊OBx軸上.將AOB繞點B按順時針方向旋轉(zhuǎn)一定角度后得A′O′B,點A的對應點A′x軸上,則點O′的坐標為(  )

A. , B. , C. , D. ,4

【答案】C

【解析】試題分析:利用等面積法求O'的縱坐標,再利用勾股定理或三角函數(shù)求其橫坐標:

如答圖,過O’O’F⊥x軸于點F,過AAE⊥x軸于點E,

∵A的坐標為(2),∴AE=OE=2.

由等腰三角形底邊上的三線合一得OB=2OE=4,

Rt△ABE中,由勾股定理可求AB=3,則A’B=3,

由旋轉(zhuǎn)前后三角形面積相等得,即,

∴O’F=·

Rt△O’FB中,由勾股定理可求BF=∴OF=.

∴O’的坐標為(.

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,設(shè)計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有“0元”、“10元”、“20元”和“30元”的字樣.規(guī)定:顧客在本商場同一日內(nèi),每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格購物券,可以重新在本商場消費,某顧客剛好消費200元.

(1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列四個結(jié)論:

①4a+c<0;②m(am+b)+b>a(m≠﹣1);③關(guān)于x的一元二次方程ax2+(b﹣1)x+c=0沒有實數(shù)根;④ak4+bk2<a(k2+1)2+b(k2+1)(k為常數(shù)).其中正確結(jié)論的個數(shù)是( 。

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,平行四邊形的頂點,邊落在正半軸上,為線段上一點,過點分別作,交平行四邊形各邊如圖.若反比例函數(shù)的圖象經(jīng)過點,四邊形的面積為,則的值為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABCD中,DE、BF分別是∠ADC和∠ABC的角平分線,交AB、CD于點E、F,連接BD、EF.

(1)求證:BD、EF互相平分;

(2)若∠A=600,AE=2EB,AD=4,求四邊形DEBF的周長和面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,點A、B的坐標分別為(1,4)和(3,0),點Cy軸上的一個動點,且A、B、C三點不在同一條直線上,當ABC的周長最小時,點C的坐標是(

A. 0,0); B. 0,1); C. 0,2); D. 0,3).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,二次函數(shù)圖象與軸交于A(-3,0),B(1,0)兩點,與y軸交于點C.

1)求這個二次函數(shù)的解析式;

2)點P是直線AC上方的拋物線上一動點,是否存在點P,使ACP的面積最大?若存在,求出點P的坐標;若不存在,說明理由;

3)點Q是直線AC上方的拋物線上一動點,過點QQE垂直于軸,垂足為E.是否存在點Q,使以點BQ、E為頂點的三角形與AOC相似?若存在,直接寫出點Q的坐標;若不存在,說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線y1=ax2+bx+ca≠0)圖象的一部分,拋物線的頂點坐標A1,3),與x軸的一個交點B4,0),直線y2=mx+nm≠0)與拋物線交于A,B兩點,下列結(jié)論:

①2a+b=0;②abc0;方程ax2+bx+c=3有兩個相等的實數(shù)根;拋物線與x軸的另一個交點是(-10);1x4時,有y2y1,

其中正確的是( )

A. ①②③ B. ①③④ C. ①③⑤ D. ②④⑤

查看答案和解析>>

同步練習冊答案