【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點A(4,4),B(5,0)和原點O,P為二次函數(shù)圖象上的一個動點,過點P作x軸的垂線,垂足為D(m,0),并與直線OA相較于點C.
(1)求出二次函數(shù)的解析式;
(2)當點P在直線OA的上方時,求線段PC的最大值;
(3)當點P在直線OA的上方時,是否存在一點P,使射線OP平分∠AOy,若存在,請求出P點坐標;若不存在.請說明理由;
(4)當m>0時,探索是否存在點P,使得△PCO為等腰三角形,若存在,求出P點的坐標;若不存在,請說明理由.
【答案】(1)y=﹣x2+5x;(2)4;(3)存在,P(4﹣,2+3);(4)存在,P(4﹣,2+3)
【解析】
(1)由待定系數(shù)法將A(4,4),B(5,0)代入二次函數(shù)的解析式為y=ax2+bx即可;
(2)求出OA的解析式,將P,C的縱坐標用含m的代數(shù)式表示出來,再表示出PC的長度,用函數(shù)的思想即可求出其最大值;
(3)存在,如圖,當射線OP平分∠AOy時,過點P作PM⊥y軸于點M,作PN⊥OA于點N,則PM=PN,證△ODC和△PCN是等腰直角三角形,可用含m的代數(shù)式分別表示出PM,PN的長度,解等式即可求出m的值,進一步寫出點P的坐標;
(4)存在,當△PCO為等腰三角形時,只存在PC=OC一種情況,用含m的代數(shù)式表示出PC,OC的長,解方程即可求出m的值,進一步寫出點P的坐標.
解:(1)∵二次函數(shù)的圖象經(jīng)過原點,
∴設二次函數(shù)的解析式為y=ax2+bx,
將A(4,4),B(5,0)代入,
得,
解得,a=﹣1,b=5,
∴y=﹣x2+5x;
(2)設直線OA的解析式為y=ax,
將A(4,4)代入,
得,a=1,
∴yOA=x,
∵PD⊥x軸,D(m,0),
∴P(m,﹣m2+5m),C(m,m),
∴PC=﹣m2+5m﹣m
=﹣m2+4m
=﹣(m﹣2)2+4,
根據(jù)二次函數(shù)的圖象及性質(zhì)可知,當m=2時,PC有最大值,其最大值為4;
(3)存在,理由如下:
如圖,當射線OP平分∠AOy時,過點P作PM⊥y軸于點M,作PN⊥OA于點N,
則PM=PN,
∵點C在直線yOA=x上,
∴△ODC是等腰直角三角形,
∴∠OCD=∠PCN=45°,
∴△PCN是等腰直角三角形,
由(2)知,PC=﹣m2+4m,
∴PN=(﹣m2+4m)=﹣m2+2m,
∵P(m,﹣m2+5m),
∴PM=m,
∵PM=PN,
∴m=﹣m2+2m,
解得,m1=0(舍去),m2=4﹣,
∴P(4﹣,2+3);
(4)存在,理由如下:
∵∠PCO=180°﹣∠OCD=135°,
∴當△PCO為等腰三角形時,只存在PC=OC一種情況,
由(2)知,PC=﹣m2+4m,OC=OD=m,
∴﹣m2+4m=m,
解得,m1=0(舍去),m2=4﹣,
∴當m=4﹣時,﹣m2+5m=2+3,
∴P(4﹣,2+3).
科目:初中數(shù)學 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲、乙兩車均從A地勻速駛向B地,甲車比乙車早出發(fā)2小時,出發(fā)后,甲車出現(xiàn)了故障停下來維修,半小時后繼續(xù)以原速向B地行駛.當乙車到達B地后立刻提速50%返回,在返回途中第二次與甲車相遇.下圖表示甲乙兩車之間的距離y(千米)與甲車行駛的時間x(小時)之間的函數(shù)關(guān)系.則當乙車第二次與甲車相遇時,甲車距離B地_____千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】冬天即將到來,龍泉某中學的初三學生到某蔬菜生產(chǎn)基地作數(shù)學實驗.在氣溫較低時,蔬菜生產(chǎn)基地用裝有恒溫系統(tǒng)的大棚栽培蔬菜,經(jīng)收集數(shù)據(jù),該班同學將大棚內(nèi)溫度和時間的關(guān)系擬合為一個分段函數(shù),如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉后,大棚內(nèi)的溫度y(℃)與時間x(h)之間的函數(shù)關(guān)系,其中線段AB,BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關(guān)閉階段.
請根據(jù)圖中信息解答下列問題:
(1)求這天的溫度y與時間x(0≤x≤24)的函數(shù)關(guān)系式;
(2)若大棚栽種某種蔬菜,溫度低于10℃時會受到傷害.問若栽種這種蔬菜,恒溫系統(tǒng)最多可以關(guān)閉多少小時就必須再次啟動,才能使蔬菜避免受到傷害?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在由每個邊長為1的小正方形組成的9×9的網(wǎng)格中,點A,B,C都在格點上,點B繞點C逆時針旋轉(zhuǎn)90°后的對應點為M,已知點B的坐標為(0,﹣2)(坐標軸與網(wǎng)格線平行).
(1)直接寫出:點C的坐標為 ,點M的坐標為 ;
(2)若平面內(nèi)存在一點P,且P為△ACM的外心,直接寫出點P的坐標是 ;
(3)CN平分∠BCM交y軸于點N,則N點坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知ABCD的對稱中心在原點O,且A(﹣2,1),B(﹣3,﹣2).
(1)求C點及D點的坐標;
(2)求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=(x-m)2-1.
(1)當二次函數(shù)的圖象經(jīng)過坐標原點O(0,0)時,求二次函數(shù)的解析式;
(2)如下圖,當m=2時,該拋物線與軸交于點C,頂點為D,求C、D 兩點的坐標;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交CD于點F,交AD的延長線于點E,若AB=4,BM=2,則△DEF的面積為( )
A.9B.8C.15D.14.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB垂直弦CD于點E,點F在AB的延長線上,且∠BCF=∠A.
(1)求證:直線CF是⊙O的切線;
(2)若⊙O的半徑為5,DB=4.求sin∠D的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的半徑為4,點B是圓上一動點,點A為⊙O內(nèi)一定點,OA=4,將AB繞A點順時針方向旋轉(zhuǎn)120°到AC,以AB、BC為鄰邊作ABCD,對角線AC、BD交于E,則OE的最大值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com