【題目】在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且∠EAF=∠CEF=45°
(1)將△ADF繞著點A順時針旋轉90°,得到△ABG(如圖①),求證:△AEG≌△AEF;
(2)若直線EF與AB,AD的延長線分別交于點M,N(如圖②),求證:EF2=ME2+NF2
(3)將正方形改為長與寬不相等的矩形,若其余條件不變(如圖③),請你直接寫出線段EF,BE,DF之間的數(shù)量關系.
【答案】(1)證明見解析;(2)證明見解析;(3)2(DF2+BE2)=EF2
【解析】
試題分析:(1)根據(jù)旋轉的性質(zhì)可知AF=AG,∠EAF=∠GAE=45°,故可證△AEG≌△AEF;
(2)將△ADF繞著點A順時針旋轉90°,得到△ABG,連結GM.由(1)知△AEG≌△AEF,則EG=EF.再由△BME、△DNF、△CEF均為等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后證明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代換即可證明EF2=ME2+NF2;
(3)將△ADF繞著點A順時針旋轉90°,得到△ABG,根據(jù)旋轉的性質(zhì)可以得到△ADF≌△ABG,則DF=BG,再證明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代換得到EF=BE+DF.
試題解析:(1)∵△ADF繞著點A順時針旋轉90°,得到△ABG,
∴AF=AG,∠FAG=90°,
∵∠EAF=45°,
∴∠GAE=45°,
在△AGE與△AFE中,
,
∴△AGE≌△AFE;
(2)設正方形ABCD的邊長為a.
將△ADF繞著點A順時針旋轉90°,得到△ABG,連結GM.
則△ADF≌△ABG,DF=BG.
由(1)知△AEG≌△AEF,
∴EG=EF.
∵∠CEF=45°,
∴△BME、△DNF、△CEF均為等腰直角三角形,
∴CE=CF,BE=BM,NF=DF,
∴a-BE=a-DF,
∴BE=DF,
∴BE=BM=DF=BG,
∴∠BMG=45°,
∴∠GME=45°+45°=90°,
∴EG2=ME2+MG2,
∵EG=EF,MG=BM=DF=NF,
∴EF2=ME2+NF2;
(3)EF2=2BE2+2DF2.
如圖所示,延長EF交AB延長線于M點,交AD延長線于N點,
將△ADF繞著點A順時針旋轉90°,得到△AGH,連結HM,HE.
由(1)知△AEH≌△AEF,
則由勾股定理有(GH+BE)2+BG2=EH2,
即(GH+BE)2+(BM-GM)2=EH2
又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE-GH)2=EF2,
即2(DF2+BE2)=EF2
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,∠DAC的平分線交DC于點E,若點P,Q分別是AD和AE上的動點,則DQ+PQ的最小值是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 全等三角形是指形狀相同的三角形
B. 全等三角形是指面積相等的三角形
C. 全等三角形的周長和面積都相等
D. 所有的等邊三角形都全等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的直徑AB垂直于弦CD于點E,過C點作CG∥AD交AB的延長線于點G,連接CO并延長交AD于點F,且CF⊥AD.
(1)試問:CG是⊙O的切線嗎?說明理由;
(2)請證明:E是OB的中點;
(3)若AB=8,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E.
(1)求證:DE=AB.
(2)以D為圓心, DE為半徑作圓弧交AD于點G.若BF=FC=1,試求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面推理過程:
如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2(已知),
且∠1=∠CGD( ),
∴∠2=∠CGD(等量代換).
∴CE∥BF( ).
∴∠ =∠C( ).
又∵∠B=∠C(已知),
∴∠ =∠B(等量代換).
∴AB∥CD( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】體育文化用品商店購進籃球和排球共20個,進價和售價如下表,全部銷售完后共獲利潤260元.
籃球 | 排球 | |
進價(元/個) | 80 | 50 |
售價(元/個) | 95 | 60 |
求:(1)購進籃球和排球各多少個?
(2)銷售6個排球的利潤與銷售幾個籃球的利潤相等?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)發(fā)現(xiàn)
如圖,點為線段外一動點,且,.
填空:當點位于____________時,線段的長取得最大值,且最大值為_________.(用含,的式子表示)
(2)應用
點為線段外一動點,且,.如圖所示,分別以,為邊,作等邊三角形和等邊三角形,連接,.
①找出圖中與相等的線段,并說明理由;
②直接寫出線段長的最大值.
(3)拓展
如圖,在平面直角坐標系中,點的坐標為,點的坐標為,點為線段外一動點,且,,,求線段長的最大值及此時點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com