【題目】2022年在北京將舉辦第24屆冬季奧運(yùn)會,很多學(xué)校都開展了冰雪項(xiàng)目學(xué)習(xí).如圖,滑雪軌道由ABBC兩部分組成,ABBC的長度都為200米,一位同學(xué)乘滑雪板沿此軌道由A點(diǎn)滑到了C點(diǎn),若AB與水平面的夾角α20°BC與水平面的夾角β45°,則他下降的高度為___________米(精確到1米,,sin20o=0.3420,tan20o=0.3640,cos20o=0.9400).

【答案】210

【解析】

過點(diǎn)AAEBDE,過點(diǎn)BBGCF于點(diǎn)G,然后根據(jù)銳角三角函數(shù)的定義即可求出答案.

解:過點(diǎn)AAEBDE,過點(diǎn)BBGCF于點(diǎn)G

RtABE中,

sinα=

AE=ABsinα=200×sin20°≈68

RtBCG中,

sinβ=

BG=BCsinβ=200×sin45°≈142

∴他下降的高度為:AE+BG=68+142=210

故答案為210

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù))的圖象如圖所示,對稱軸為.有下列4個結(jié)論:①;②;③;④當(dāng)時,的增大而增大.其中,正確的結(jié)論有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ab,∠140°,∠280°,則∠3的度數(shù)為( 。

[Failed to download image : http://192.168.0.10:8086/QBM/2020/6/15/2485292109684736/2491850430775296/STEM/0502255e02c3498e9234cb6eaef26eb9.png]

A.120°B.130°C.140°D.110°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明準(zhǔn)備給長米,寬米的長方形空地栽種花卉和草坪,圖中I、II、III三個區(qū)域分別栽種甲、乙、丙三種花卉,其余區(qū)域栽種草坪.四邊形均為正方形,且各有兩邊與長方形邊重合;矩形(區(qū)域II)是這兩個正方形的重疊部分,如圖所示.

1)若花卉均價為,種植花卉的面積為,草坪均價為,且花卉和草坪栽種總價不超過元,求的最大值.

2)若矩形滿足

①求,的長.

②若甲、乙、丙三種花卉單價分別為,,,且邊的長不小于邊長的倍.求圖中III、III三個區(qū)域栽種花卉總價的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于Am,6),B3,n)兩點(diǎn).

1)求一次函數(shù)的解析式;

2)求的面積;

3)根據(jù)圖象直接寫出x的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在中,的角平分線邊于

1)以邊上一點(diǎn)為圓心,過兩點(diǎn)作(不寫作法,保留作圖痕跡),再判斷直線的位置關(guān)系,并說明理由;

2)若(1)中的邊的另一個交點(diǎn)為,,求線段與劣弧所圍成的圖形面積.(結(jié)果保留根號和

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科技公司接到一份新型高科技產(chǎn)品緊急訂單,要求在天內(nèi)(含天)完成任務(wù),為提高生產(chǎn)效率,工廠加班加點(diǎn),接到任務(wù)的第一天就生產(chǎn)了該種產(chǎn)品件,以后每天生產(chǎn)的產(chǎn)品都比前一天多件.由于機(jī)器損耗等原因,當(dāng)日生產(chǎn)的產(chǎn)品數(shù)量達(dá)到件后,每多生產(chǎn)一件,當(dāng)天生產(chǎn)的所有產(chǎn)品平均每件成本就增加元.

1)設(shè)第天生產(chǎn)產(chǎn)品件,求出之間的函數(shù)解析式,并寫出自變量的取值范圍.

2)若該產(chǎn)品每件生產(chǎn)成本(日生產(chǎn)量不超過件時)為元,訂購價格為每件元,設(shè)第天的利潤為元,試求之間的函數(shù)解析式,并求該公司哪一天獲得的利潤最大,最大利潤的是多少?

3)該公司當(dāng)天的利潤不低于元的是哪幾天?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+mxm<0)交x軸于O,A兩點(diǎn),頂點(diǎn)為點(diǎn)B

1)求△AOB的面積(用含m的代數(shù)式表示);

2)直線y=kx+bk0)過點(diǎn)B,且與拋物線交于另一點(diǎn)D(點(diǎn)D與點(diǎn)A不重合),交y軸于點(diǎn)C.過點(diǎn)CCEABx軸于點(diǎn)E

(ⅰ) 若∠OBA=90°,2<<3,求k的取值范圍;

(ⅱ) 求證:DEy軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在正方形中,,是線段上的一動點(diǎn),連接,過點(diǎn)于點(diǎn).為直徑作,當(dāng)點(diǎn)從點(diǎn)移動到點(diǎn)時,對應(yīng)點(diǎn)也隨之運(yùn)動,則點(diǎn)運(yùn)動的路程長度為____________.

查看答案和解析>>

同步練習(xí)冊答案