【題目】居民區(qū)內(nèi)的廣場舞引起媒體關(guān)注,民勤電視臺為此進(jìn)行過專訪報到.小平想了解本小區(qū)居民對廣場舞的看法,進(jìn)行了一次抽樣調(diào)查,把居民對廣場舞的看法分為四個層次:.非常贊同;.贊同但要有時間限制;.無所謂;.不贊同.并將調(diào)查結(jié)果繪制了圖①和圖②兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息解答下列問題:

1)求本次被抽查的居民有多少人?

2)將圖①和圖②補充完整.

3)求圖②中層次所在扇形的圓心角度數(shù).

4)估計該小區(qū)5000名居民中對廣場舞的看法表示贊同(包括層次和層次)的大約有多少人.

【答案】1)本次共抽查300人;(2)補圖見解析;(3108°;(4)約有3500人.

【解析】

1)由A層次的人數(shù)除以所占的百分比求出調(diào)查的學(xué)生總數(shù)即可;

2)由D層次人數(shù)除以總?cè)藬?shù)求出D所占的百分比,再求出B所占的百分比,再乘以總?cè)藬?shù)可得B層次人數(shù),用總?cè)藬?shù)乘以C層次所占的百分比可得C層次的人數(shù),補全圖形即可;

3)用360°乘以A層次的人數(shù)所占的百分比即可得“A”層次所在扇形的圓心角的度數(shù);

4)求出樣本中A層次與B層次的百分比之和,乘以5000即可得到結(jié)果.

解:(1)由圖可知,層次的人有90人,占被抽查的居民的30%

∴共抽查:(人),

答:本次共抽查300人;

2層次:300×20%=60(人);

層次:30÷300×100%=10%;

層次:300-90-60-30=120(人),

120÷300×100%=40%;

補圖如下:

;

3層次所在扇形的圓心角度數(shù)為:;

4(人),

答:估計該小區(qū)5000名居民中對廣場舞表示贊同的約有3500人.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】體育老師統(tǒng)計了七年級甲、乙兩個班女生的身高情況,并繪制了如下不完整的統(tǒng)計圖.請根據(jù)圖中信息,解決下列問題:

(1)求甲、乙兩個班共有女生多少人?

(2)請將頻數(shù)分布直方圖補充完整;

(3)求扇形統(tǒng)計圖中部分所對應(yīng)的扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的O經(jīng)過點E,且交BC于點F

1)求證:ACO的切線;

2)若BF6O的半徑為5,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC10,BCD為邊AC上一動點(C點除外),把線段BD繞著點D沿著順時針的方向旋轉(zhuǎn)90°DE,連接CE,則CDE面積的最大值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點A、B,與軸交于點C,點B的坐標(biāo)為 ,點軸上,連接AD

1   ;

2)若點是拋物線在第二象限上的點,過點PFx軸,垂足為交于點E.是否存在這樣的點P,使得PE=7EF?若存在,求出點的坐標(biāo);若不存在,請說明理由;

3)若點在拋物線上,且點的橫坐標(biāo)大于-4,過點,垂足為H,直線軸交于點K,且,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】市實驗中學(xué)計劃在暑假第二周的星期一至星期五開展暑假社會實踐活動,要求每位學(xué)生選擇兩天參加活動.

1)甲同學(xué)隨機選擇連續(xù)的兩天,其中有一天是星期三的概率是   

2)乙同學(xué)隨機選擇兩天,其中有一天是星期三的概率是多少?(列表或畫樹形圖或列舉)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑為6,點A、B在⊙O上,∠AOB60°,動點C在⊙O上(與A、B兩點不重合),連接BC,點DBC中點,連接AD,則線段AD的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個四邊形的對角線把四邊形分成兩個三角形,一個是等邊三角形,另一個是該對角線所對的角為60°的三角形,我們把這條對角線叫做這個四邊形的理想對角線,這個四邊形稱為理想四邊形.

(1)如圖①,在RtABC中∠C=90°,∠B=30°,AC=4,DAB上一點,AD=2,EBC中點,連接DE.求證:四邊形ADEC為理想四邊形;

(2)如圖②,△ABC是等邊三角形,若BD為理想對角線,四邊形ABCD為理想四邊形.請畫圖找出符合條件的C點落在怎樣的圖形上;

(3)(2)的條件下,

①若△BCD為直角三角形,BC=3,求AC的長度;

②如圖③,若CD=x,BC=y,AC=z,請直接寫出x,y,z之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)接于O,連接AO并延長交BC于點D,若∠B60°,∠C50°,則∠BAD的度數(shù)是(  )

A.70°B.40°C.50°D.60°

查看答案和解析>>

同步練習(xí)冊答案