【題目】△ABC在直角坐標系內的位置如圖所示.
(1)請直接寫出A、B、C的坐標;
(2)請在這個坐標系內畫出△A1B1C1,使△A1B1C1與△ABC關于y軸對稱,并寫出B1的坐標;
(3)計算△A1B1C1面積.
科目:初中數學 來源: 題型:
【題目】如圖,已知∠1=∠2,則下列條件中,不能使△ABC≌△DBC成立的是。ā 。
A. AB=CD B. AC=BD C. ∠A=∠D D. ∠ABC=∠DCB
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒2cm,設運動的時間為t秒。
(1)當t為何值時,CP把△ABC的周長分成相等的兩部分。
(2)當t為何值時,CP把△ABC的面積分成相等的兩部分,并求出此時CP的長;
(3)當t為何值時,△BCP為等腰三角形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一種實驗用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時間t(分)滿足二次函數v=at2,后三分鐘其速度v(米/分)與時間t(分)滿足反比例函數關系,如圖,軌道旁邊的測速儀測得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數和反比例函數的關系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過點(1,2),后三分鐘時過點(2,8),分別利用待定系數法可求得函數解析式;
(2)把t=2代入(1)中二次函數解析式即可.
詳解:(1)v=at2的圖象經過點(1,2),
∴a=2.
∴二次函數的解析式為:v=2t2,(0≤t≤2);
設反比例函數的解析式為v=,
由題意知,圖象經過點(2,8),
∴k=16,
∴反比例函數的解析式為v=(2<t≤5);
(2)∵二次函數v=2t2,(0≤t≤2)的圖象開口向上,對稱軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點睛:本題考查了反比例函數和二次函數的應用.解題的關鍵是從圖中得到關鍵性的信息:自變量的取值范圍和圖象所經過的點的坐標.
【題型】解答題
【結束】
24
【題目】閱讀材料:小胖同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現(xiàn);
借助小胖同學總結規(guī)律,構造“手拉手”圖形來解答下面的問題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(用含有m的式子表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在學校開展的數學活動課上,小明和小剛制作了一個正三樓錐(質量均勻,四個面完全相同),并在各個面上分別標記數字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數字,如果兩次所擲數字的和為單數,那么算小明贏,如果兩歡所擲數字的和為偶數,那么算小明贏;
(1)請用列表或者面樹狀圍的方法表示上述游戲中的所有可能結果.
(2)請分別隸出小明和小剛能贏的概率,并判新游戲的公平性.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線與x軸交于點A,與y軸交于點C.拋物線經過A,C兩點,且與x軸交于另一點B(點B在點A右側).
(1)求拋物線的解析式及點B坐標;
(2)若點M是線段BC上的一動點,過點M的直線EF平行y軸交x軸于點F,交拋物線于點E.求ME長的最大值;
(3)試探究當ME取最大值時,在拋物線上、x軸下方是否存在點P,使以M,F(xiàn),B,P為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標;若不存在,試說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC,AC⊥CB,AC=15,AB=25,點D為斜邊上動點。
(1)如圖,過點D作DE⊥AB交CB于點E,連接AE,當AE平分∠CAB時,求CE;
(2)如圖,在點D的運動過程中,連接CD,若△ACD為等腰三角形,求AD。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀材料:
材料一:兩個含有二次根式的非零代數式相乘,如果它們的積不含二次根式,那么這兩個代數式互為有理化因式.
例如:,我們稱的一個有理化因式是的一個有理化因式是.
材料二:如果一個代數式的分母中含有二次根式,通?蓪⒎肿、分母同乘分母的有理化因式,使分母中不含根號,這種變形叫做分母有理化.
例如:,
請你仿照材料中的方法探索并解決下列問題:
(1)的有理化因式為______,的有理化因式為______.(均寫出一個即可)
(2)將下列各式分母有理化(要求寫出變形過程):
①.
②.
(3)請從下列A,B兩題中任選一題作答,我選擇題.
A計算:的結果為______.
B計算:的結果為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知港口A東偏南10°方向有一處小島B,一艘貨輪從港口A沿南偏東40°航線出發(fā),行駛80海里到達C處,此時觀測小島B在北偏東60°方向.
(1)求此時貨輪到小島B的距離.
(2)在小島周圍36海里范圍內是暗礁區(qū),此時輪船向正東方向航行有沒有觸礁危險?請作出判斷并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com