【題目】如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
【答案】見解析;4.9
【解析】
試題(1)由正方形的性質得出AB=AD,∠B=90°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出結論;
(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的長.
試題解析:(1)∵四邊形ABCD是正方形,
∴AB=AD,∠B=90°,AD∥BC,
∴∠AMB=∠EAF,
又∵EF⊥AM,
∴∠AFE=90°,
∴∠B=∠AFE,
∴△ABM∽△EFA;
(2)∵∠B=90°,AB=12,BM=5,
∴AM==13,AD=12,
∵F是AM的中點,
∴AF=AM=6.5,
∵△ABM∽△EFA,
∴,
即,
∴AE=16.9,
∴DE=AE-AD=4.9.
科目:初中數學 來源: 題型:
【題目】某商場購進甲、乙兩種空調共40臺.已知購進一臺甲種空調比購進一臺乙種空調進價多0.2萬元;用36萬元購進乙種空調數量是用18萬元購進甲種空調數量的4倍.請解答下列問題:
(1)求甲、乙兩種空調每臺進價各是多少萬元?
(2)若商場預計投入資金不多于11.5萬元用于購買甲、乙兩種空調,且購進甲種空調至少14臺,商場有哪幾種購進方案?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在《朗讀者》節(jié)目的影響下,某中學開展了“好書伴我成長”讀書活動.為了解5月份八年級300名學生的讀書情況,隨機調查了八年級50名學生讀書的冊數,統(tǒng)計數據如下表所示:
冊數 | 0 | 1 | 2 | 3 | 4 |
人數 | 3 | 13 | 16 | 17 | 1 |
關于這組數據,下列說法正確的是 ( )
A. 中位數是2 B. 眾數是17 C. 平均數是3 D. 方差是2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示.在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的中垂線,E、N在BC上,則∠EAN=( 。
A. 58° B. 32° C. 36° D. 34°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖①,分別以△ABC的邊AB、AC為一邊向形外作正方形ABDE和正方形ACGF.求證S△AEF=S△ABC.
(2)如圖②,分別以△ABC的邊AB、AC、BC為邊向形外作正方形ABDE、ACGF、BCHI,可得六邊形DEFGHI,若S正方形ABDE=17,S正方形ACGF=25,S正方形BCHI=16,求S六邊形DEFGHI.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一三角形紙片ABC,∠A=70°,點D是AC邊上一點,沿BD方向剪開三角形紙片后,發(fā)現所得兩個紙片均為等腰三角形,則∠C的度數可以是_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小王和小李都想去體育館,觀看在我縣舉行的“市長杯”青少年校園 足球聯賽,但兩人只有一張門票,兩人想通過摸球的方式來決定誰去觀看,規(guī)則如下: 在兩個盒子內分別裝入標有數字 1,2,3,4 的四個和標有數字 1,2,3 的三個完全相 同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數字之和小于 6,那 么小王去,否則就是小李去.
(1)用樹狀圖或列表法求出小王去的概率;
(2)小李說:“這種規(guī)則不公平.”你認同他的說法嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將線段繞點逆時針旋轉角度得到線段,連接得,又將線段繞點逆時針旋轉得線段(如圖①).
求的大。ńY果用含的式子表示);
又將線段繞點順時針旋轉得線段,連接(如圖②)求;
連接、,試探究當為何值時,.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com