【題目】如圖,直線y=﹣x+3與x軸、y軸分別交于點B、點C,經(jīng)過B、C兩點的拋物線y=x2+bx+c與x軸的另一個交點為A,頂點為P.

(1)求該拋物線的解析式;
(2)連接AC,在x軸上是否存在點Q,使以P、B、Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

【答案】
(1)

解:∵直線y=﹣x+3與x軸、y軸分別交于點B、點C,

令x=0,得y=3,

∴C(0,3),

令y=0,得x=3,

∴B(3,0),

∵經(jīng)過B、C兩點的拋物線y=x2+bx+c

,

解得 ,

∴拋物線解析式為y=x2﹣4x+3;


(2)

解:由(1),得A(1,0),連接BP,

∵∠CBA=∠ABP=45°,

∵拋物線解析式為y=x2﹣4x+3;

∴P(2,﹣1),

∵A(1,0),B(3,0),C(0,3),

∴BA=2,BC=3 ,BP=

當(dāng)△ABC∽△PBQ時,

,

,

∴BQ=3,

∴Q(0,0),

當(dāng)△ABC∽△QBP時,

,

∴BQ= ,

∴Q( ,0),

∴Q點的坐標(biāo)為(0,0)或( ,0).


【解析】(1)先確定出點B,C坐標(biāo),再用待定系數(shù)法求函數(shù)解析式;(2)先求出BA=2,BC=3 ,BP= ,然后分兩種情況①由△ABC∽△PBQ,得到 ,求出BQ,②由△ABC∽△QBP得 ,求出BQ,即可.
【考點精析】本題主要考查了二次函數(shù)的圖象的相關(guān)知識點,需要掌握二次函數(shù)圖像關(guān)鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,P、Q分別是BC、AC上的點,作PR⊥ABPS⊥AC,垂足分別是R、S,若AQ=PQ,PR=PS,下面四個結(jié)論:①AS=AR;②QP∥AR;③△BRP≌△QSP④AP垂直平分RS.其中正確結(jié)論的序號是 (請將所有正確結(jié)論的序號都填上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點B、C、D都在⊙O上,過C點作CA∥BD交OD的延長線于點A,連接BC,∠B=∠A=30°,BD=2

(1)求證:AC是⊙O的切線;
(2)求由線段AC、AD與弧CD所圍成的陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△OAB的頂點A(﹣2,4)在拋物線y=ax2上,將Rt△OAB繞點O順時針旋轉(zhuǎn)90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標(biāo)為( )

A.( ,
B.(2,2)
C.( ,2)
D.(2,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知反比例函數(shù)y= 的圖象經(jīng)過點A,點O是坐標(biāo)原點,OA=2且OA與x軸的夾角是60°.

(1)試確定此反比例函數(shù)的解析式;
(2)將線段OA繞O點順時針旋轉(zhuǎn)30°得到線段OB,判斷點B是否在此反比例函數(shù)的圖象上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC頂點的橫、縱坐標(biāo)都是整數(shù).若將△ABC以某點為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°得到△DEF,則旋轉(zhuǎn)中心的坐標(biāo)是( )

A.(0,0)
B.(1,0)
C.(1,﹣1)
D.(2.5,0.5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算與解方程
(1)計算: tan60°+|﹣3sin30°|﹣cos245°.
(2)解方程:x2+4x+1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A(1,2),B(3,1),C(﹣2,﹣1).

(1)在圖中作出△ABC關(guān)于y軸對稱的△A1B1C1

(2)直接寫出點A1,B1,C1的坐標(biāo).

A1 B1  , C1   ;

(3)請你求出△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,B=90°,AB=16cm,BC=12cm,P、Q是ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設(shè)出發(fā)的時間為t秒.

(1)出發(fā)2秒后,求PQ的長;

(2)當(dāng)點Q在邊BC上運動時,出發(fā)幾秒鐘后,PQB能形成等腰三角形?

(3)當(dāng)點Q在邊CA上運動時,求能使BCQ成為等腰三角形的運動時間.

查看答案和解析>>

同步練習(xí)冊答案