【題目】如圖,AB為⊙O的直徑 ,點(diǎn)C在⊙O上,過點(diǎn)O作交BC于點(diǎn)E,交⊙O于點(diǎn)D,CD∥AB.
(1)求證:E為OD的中點(diǎn);
(2)若CB=6,求四邊形CAOD的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)由垂徑定理得,由兩直線平行,內(nèi)錯(cuò)角相等,得,由角邊角可證得與,由全等三角形的對應(yīng)邊相等,即可得證;
(2)連接,由直徑所對的圓周角是°,得°,由垂徑定理,得∴= ,
∥,所以四邊形是平行四邊形,由線段垂直平分線的性質(zhì)可得,可證是等邊三角形, °.在中,由勾股定理得, .由此, ,可得四邊形CAOD的面積為.
試題解析:(1)∵在⊙O中, 于,
∴ ,
∵CD∥AB,
∴.
在與中, ,
∴≌
∴,
∴為的中點(diǎn);
(2)連接,
∵是⊙O的直徑,
∴°,
∵,
∴°= ,
∴∥,
∵∥,
∴四邊形是平行四邊形
∵是的中點(diǎn), ,
∴
∵,
∴,
∴是等邊三角形,
∴°,
∴°°,
∴在中, .
∵
∴.
∵,
∴, .
∴
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中,△ABC不是直角三角形的是 ( )
A. b2=a2-c2 B. ∠A:∠B:∠C=3:4:5
C. ∠C=∠A-∠B D. a2:b2:c2=1:3:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC中,點(diǎn)D為射線BA上一點(diǎn),作DE=DC,交直線BC于點(diǎn)E,∠ABC的平分線BF交CD于點(diǎn)F,過點(diǎn)A作AH⊥CD于H,當(dāng)EDC=30,CF=,則DH=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,真命題是( ).
① 相等的角是對頂角;② 同旁內(nèi)角互補(bǔ);③ 在同一平面內(nèi),若a//b,b//c,則a//c;④ 末位是零的整數(shù)能被5整除.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小慧在某風(fēng)景區(qū)(如圖)沿景區(qū)公路游覽,約好在賓館見面.上午,小慧乘坐車速為的電動(dòng)汽車從賓館出發(fā),先后在兩個(gè)景點(diǎn)游玩分鐘和分鐘后回到賓館.小聰騎自行車從飛瀑出發(fā),車速為,他先后在兩個(gè)景點(diǎn)游玩了分鐘和分鐘后回到賓館.圖中的圖象分別表示小慧和小聰離賓館的路程與時(shí)間的函數(shù)關(guān)系(不全).試結(jié)合圖中信息回答:
()小慧游覽的景點(diǎn)是__________,點(diǎn)的坐標(biāo)為__________.
()當(dāng)小聰和小慧相遇時(shí),叫他們距離賓館多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)P(﹣x2﹣1,﹣2)所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,BD是對角線,AE⊥BD于點(diǎn)E,CF⊥BD于點(diǎn)F,試判斷四邊形AECF是不是平行四邊形,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com