【題目】(1)如圖①所示,P是等邊△ABC內(nèi)的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉(zhuǎn)60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;
(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內(nèi)的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉(zhuǎn)90°得△BCQ,連接PQ.當(dāng)PA、PB、PC滿足什么條件時,∠PQC=90°?請說明.
【答案】(1)證明見解析(2)滿足:
【解析】
由旋轉(zhuǎn)得△BAP≌△BCQ 滿足:
∴PA=CQ PB=BQ 由旋轉(zhuǎn)得△BAP≌△BCQ
∵∠PBQ=60∴PA=CQ PB=BQ
∴△PBQ為等邊三角形 ∠PBQ=
∴PB=PQ ∴
∵PA+PB=PC∵
∴∴
∴∠PQC=90∴
(1)由旋轉(zhuǎn)的性質(zhì)可得到的條件是:①BP=BQ、PA=QC,②∠ABP=∠CBQ;
由②可證得∠PBQ=∠CBP+∠CBQ=∠CBP+∠ABP=∠ABC=60°,聯(lián)立BP=BQ,即可得到△BPQ是等邊三角形的結(jié)論,則BP=PQ;將等量線段代換后,即可得出PQ2+QC2=PC2,由此可證得∠PQC=90°;
(2)由(1)的解題思路知:△PBQ是等腰Rt△,則PQ2=2PB2,其余過程同(1),只不過所得結(jié)論稍有不同.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對七、八、九年級的學(xué)生進(jìn)行體育水平測試,成績評定為優(yōu)秀、良好、合格、不合格四個等第.為了解這次測試情況,學(xué)校從三個年級隨機抽取200名學(xué)生的體育成績進(jìn)行統(tǒng)計分析.相關(guān)數(shù)據(jù)的統(tǒng)計圖、表如下:
根據(jù)以上信息解決下列問題:
(1)在統(tǒng)計表中,a的值為 ,b的值為 ;
(2)在扇形統(tǒng)計圖中,八年級所對應(yīng)的扇形圓心角為 度;
(3)若該校三個年級共有2000名學(xué)生參加考試,試估計該校學(xué)生體育成績不合格的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰梯形ABCD中,AD//BC,E是AB的中點,過點E作EF//BC交CD于點F,AB=4,BC=6,∠B=60°.
(1)求點E到BC的距離;
(2)點P為線段EF上的一個動點,過點P作PM⊥EF交BC于M,過M作MN//AB交折線ADC于N,連結(jié)PN,設(shè)EP=x.
①當(dāng)點N在線段AD上時(如圖2),△PMN的形狀是否發(fā)生改變?若不變,求出△PMN的周長;若改變,請說明理由;
②當(dāng)點N在線段DC上時(如圖3),是否存在點P,使△PMN為等腰三角形?若存在,請求出所有滿足條件的x的值;若不存在,請說明理由.
圖1 圖2 圖3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上的A、B兩點分別對應(yīng)數(shù)字a、b,且a、b滿足|4a-b|+(a-4)2=0
(1)a= ,b= ,并在數(shù)軸上面出A、B兩點;
(2)若點P從點A出發(fā),以每秒3個單位長度向x軸正半軸運動,求運動時間為多少時,點P到點A的距離是點P到點B距離的2倍;
(3)數(shù)軸上還有一點C的坐標(biāo)為30,若點P和點Q同時從點A和點B出發(fā),分別以每秒3個單位長度和每秒1個單位長度的速度向C點運動,P點到達(dá)C點后,再立刻以同樣的速度返回,運動到終點A.求點P和點Q運動多少秒時,P、Q兩點之間的距離為4,并求此時點Q對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a,b,c是直角三角形的三條邊長,斜邊c上的高的長是h,給出下列結(jié)論:
①以a2,b2,c2的長為邊的三條線段能組成一個三角形
②以, , 的長為邊的三條線段能組成一個三角形
③以a+b,c+h,h的長為邊的三條線段能組成直角三角形
④以, , 的長為邊的三條線段能組成直角三角形
其中所有正確結(jié)論的序號為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=x2+bx﹣與x軸交于點A(﹣3,0)和點B,以AB為邊在x軸上方作正方形ABCD,點P是x軸上一動點,連接DP,過點P作DP的垂線與y軸交于點E.
(1)試求出二次函數(shù)的表達(dá)式和點B的坐標(biāo);
(2)當(dāng)點P在線段AO(點P不與A、O重合)運動至何處時,線段OE的長有最大值,求出這個最大值;
(3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標(biāo)及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,O為坐標(biāo)原點,已知A(-1,1),在坐標(biāo)軸上確定點P,使△AOP為等腰三角形,則符合條件的點P的個數(shù)共有( 。
A. 10個 B. 8個 C. 4個 D. 6個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠CAB=90°,P是△ABC內(nèi)一點,且PA=1,PB=3,PC= .求:∠CPA的大小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com