【題目】如圖,已知在Rt△ABC中,∠ACB=90°,AC > BC,CDRt△ABC的高,EAC的中點,ED的延長線與CB的延長線相交于點F.

(1)求證:DFBFCF的比例中項;

(2)在AB上取一點G,如果AE·AC=AG·AD,求證:EG·CF=ED·DF.

【答案】證明見解析

【解析】試題分析:(1)根據(jù)已知求得∠BDF=∠BCD,再根據(jù)∠BFD=∠DFC,證明△BFD∽△DFC,從而得BF:DF=DF:FC,進行變形即得;

(2)由已知證明△AEG∽△ADC,得到∠AEG=∠ADC=90°,從而得EG∥BC,繼而得 ,

由(1)可得 ,從而得 ,問題得證.

試題解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,

CDRt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,

EAC的中點,

∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,

∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,

又∵∠BFD=∠DFC,

∴△BFD∽△DFC,

∴BF:DF=DF:FC,

∴DF2=BF·CF;

(2)∵AE·AC=ED·DF,

,

又∵∠A=∠A,

∴△AEG∽△ADC,

∴∠AEG=∠ADC=90°,

∴EG∥BC,

,

由(1)知△DFD∽△DFC,

,

∴EG·CF=ED·DF.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

在數(shù)學課上,老師提出如下問題:

尺規(guī)作圖:作已知角的角平分線

已知:如圖,已知.

求作: 的角平分線.

小霞的作法如下:

(1)如圖,在平面內任取一點;

2以點為圓心, 為半徑作圓,交射線于點,交射線于點;

3連接,過點作射線垂直線段,交于點;

4連接.

所以射線為所求.

老師說:“小霞的作法正確.”

請回答:小霞的作圖依據(jù)是___________________________________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形,,.動點、分別從點同時出發(fā),以的速度向點、運動,連接,取、的中點、,連接.設運動的時間為.

1)求證:;

2)當為何值時,四邊形為菱形;

3)試探究:是否存在某個時刻,使四邊形為矩形,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】許多代數(shù)恒等式可以借助圖形的面積關系直觀表達,如圖①,根據(jù)圖中面積關系可以得到:。

1)如圖②,根據(jù)圖中面積關系,寫出一個關于的等式   ;

2)利用(1)中的等式求解:,則   

3)小明用8個面積一樣大的長方形(寬,長)拼圖,拼出了如圖甲、乙的兩種圖案;圖案甲是一個大的正方形,中間陰影部分是邊長為3的小正方形;圖案乙是一個大的長方形,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角尺(在RtABC中,∠ACB=90°,B=60°;在RtDEF中,∠EDF=90°,E=45°)如圖①擺放,點DAB的中點,DEAC于點P,DF經(jīng)過點C.

1)求∠ADE的度數(shù);

2)如圖②,將DEF繞點D順時針方向旋轉角,此時等腰直角三角尺記為, AC于點M, BC于點N,試判斷的值是否隨著的變化而變化?如果不變,請求出的值;反之,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于點A2,4﹚、C4,n﹚,交y軸于點B,交x軸于點D

1)求反比例函數(shù)和一次函數(shù)的表達式;

2)連接OA、OC,求△AOC的面積;

3)寫出使一次函數(shù)的值大于反比例函數(shù)的的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,將矩形折疊,使落在對角線上,折痕為,點落在點 處,若,則 ;

(2)小麗手中有一張矩形紙片,.她準備按如下兩種方式進行折疊:

①如圖2,點在這張矩形紙片的邊上,將紙片折疊,使點落在邊上的點處,折痕為,若,求的長;

②如圖3,點在這張矩形紙片的邊上,將紙片折疊,使落在射線上,折痕為,點,分別落在處,若,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在甲、乙兩名同學中選拔一人參加英語口語聽力大賽,在相同的測試條件下,兩人5次測試成績(單位:分)如下:

甲:79,81,82,8583 乙:88,7990,8172

回答下列問題:

1甲成績的平均數(shù)是  ,乙成績的平均數(shù)是  ;

2)求甲、乙兩名同學測試成績的方差S2S2

3)請你選擇一個角度來判斷選拔誰參加比賽更合適

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為1個單位的圓片上有一點A與數(shù)軸上的原點重合,AB是圓片的直徑.(結果保留π

1)把圓片沿數(shù)軸向左滾動1周,點A到達數(shù)軸上點C的位置,點C表示的數(shù)是 數(shù)(填無理有理),這個數(shù)是 ;

2)把圓片沿數(shù)軸滾動2周,點A到達數(shù)軸上點D的位置,點D表示的數(shù)是 ;

3)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負數(shù),依次運動情況記錄如下:+2,﹣1,+3,﹣4,﹣3.第幾次滾動后,A點距離原點最近?第幾次滾動后,A點距離原點最遠?

查看答案和解析>>

同步練習冊答案