【題目】為了了解全校七年級300名學(xué)生的視力情況,駱老師從中抽查了50名學(xué)生的視力情況、針對這個(gè)問題,下面說法正確的是( )

A. 300名學(xué)生是總體B. 每名學(xué)生是個(gè)體

C. 50名學(xué)生的視力情況是所抽取的一個(gè)樣本D. 這個(gè)樣本容量是300

【答案】C

【解析】

根據(jù)總體是指考查的對象的全體,個(gè)體是總體中的每一個(gè)考查的對象,樣本是總體中所抽取的一部分個(gè)體,即可求解.

A300名學(xué)生的視力情況是總體,故此選項(xiàng)錯(cuò)誤;

B、每個(gè)學(xué)生的視力情況是個(gè)體,故此選項(xiàng)錯(cuò)誤;

C、50名學(xué)生的視力情況是抽取的一個(gè)樣本,故此選項(xiàng)正確;

D、這組數(shù)據(jù)的樣本容量是50,故此選項(xiàng)錯(cuò)誤.

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過點(diǎn)A3,0,B-1,0

1求拋物線的解析式;

2求拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】鈉原子直徑0.0000000599米,0.0000000599用科學(xué)記數(shù)法示為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3BC=4,動(dòng)點(diǎn)PA點(diǎn)出發(fā),按ABC的方向在ABBC上移動(dòng),記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知□ABCD,ABx軸,AB=6,點(diǎn)A的坐標(biāo)為(1,﹣4),點(diǎn)D的坐標(biāo)為(﹣3,4),點(diǎn)B在第四象限,點(diǎn)P□ABCD邊上的一個(gè)動(dòng)點(diǎn).

1)若點(diǎn)P在邊BC上,PD=CD,求點(diǎn)P的坐標(biāo).

2)若點(diǎn)P在邊ABAD上,點(diǎn)P關(guān)于坐標(biāo)軸對稱的點(diǎn)Q落在直線y=x﹣1上,求點(diǎn)P的坐標(biāo).

3)若點(diǎn)P在邊AB,ADCD上,點(diǎn)GADy軸的交點(diǎn),如圖2,過點(diǎn)Py軸的平行線PM,過點(diǎn)Gx軸的平行線GM,它們相交于點(diǎn)M,將PGM沿直線PG翻折,當(dāng)點(diǎn)M的對應(yīng)點(diǎn)落在坐標(biāo)軸上時(shí),求點(diǎn)P的坐標(biāo).(直接寫出答案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD的對角線AC上取點(diǎn)E,使得∠CDE=15°,連接BE.延長BEF,連接CF,使得CF=BC

1)求證:DE=BE

2)求證:EF=CE+DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列式子中代數(shù)式的個(gè)數(shù)有( 。
﹣2x﹣5,﹣y,2y+1=4,4a4+2a2b3 , ﹣6.
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】8分)已知AB是⊙O的直徑,C是圓周上的動(dòng)點(diǎn),P是優(yōu)弧中點(diǎn)

1)求證OPBC

2)連接PC交直徑AB于點(diǎn)D當(dāng)OC=DC時(shí),求∠A的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料:

問題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.

李明同學(xué)的思路是:將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),從而得到∠BPC=AP′B=__________;,進(jìn)而求出等邊△ABC的邊長為__________;

問題得到解決.

請你參考李明同學(xué)的思路,探究并解決下列問題:如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=BP=,PC=1.求∠BPC度數(shù)的大小和正方形ABCD的邊長.

查看答案和解析>>

同步練習(xí)冊答案