【題目】如圖,以等邊ABC的邊BC為直徑作⊙O,分別交ABAC于點(diǎn)D、E,過點(diǎn)DDFACAC于點(diǎn)F

(1)求證:DF是⊙O的切線;

(2)若等邊ABC的邊長為8,求圖中陰影部分的面積.

【答案】(1)見解析;(2)

【解析】

1)連接、,先利用等腰三角形的性質(zhì)證,再證的中位線得,根據(jù)可得;

2)連接、作,求出、的長及的度數(shù),根據(jù)陰影部分面積計(jì)算可得.

(1)證明:連接ODCD

DFAC

∴∠AFD90°.

BC是⊙O的直徑

∴∠CDB90°

CDAB.

又∵△ABC是等邊三角形

BDAD

OBOC

ODABC的中位線

OD//AC

∴∠FDO=∠AFD90°

ODDF

DF是⊙O的切線

(2)連接OE,作OGACG則∠OGF=∠GFD=∠FDO90°

∴四邊形ODFG是矩形

ODFG

又∵OBODOEOC,∠B=∠ACB60°

∴△OBD、OCE是等邊三角形

∴∠BOD=∠COE60°,CEOC4.

∴∠DOE60°EG

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖像經(jīng)過點(diǎn)A(44),B(5,0)和原點(diǎn)O,點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)Px軸的垂線,垂足為D(m,0)(m>0),并與直線OA交于點(diǎn)C

(1)求出拋物線的函數(shù)表達(dá)式;

(2)連接OP,當(dāng)SOPCSOCD時(shí),求出此時(shí)的點(diǎn)P坐標(biāo);

(3)在直線OA上取一點(diǎn)M,使得以P、CM為頂點(diǎn)的三角形與△OCD全等,求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E的斜邊AB上一點(diǎn),以AE為直徑的與邊BC相切于點(diǎn)D,交邊AC于點(diǎn)F,連結(jié)AD

1)求證:AD平分

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)的斜邊的中點(diǎn),,,以點(diǎn)為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)得到,若,當(dāng)時(shí),圖中弧所構(gòu)成的陰影部分面積為().

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn):(1)如圖1,在等腰直角三角形中,,點(diǎn)的中點(diǎn),點(diǎn)上一點(diǎn),將射線順時(shí)針旋轉(zhuǎn)于點(diǎn),則的數(shù)量關(guān)系為____;

問題探究:(2)如圖2,在等腰三角形中,,點(diǎn)的中點(diǎn),點(diǎn)上一點(diǎn),將射線順時(shí)針旋轉(zhuǎn)于點(diǎn),則的數(shù)量關(guān)系是否改變,請(qǐng)說明理由;

問題解決:(3)如圖3,點(diǎn)為正方形對(duì)角線的交點(diǎn),點(diǎn)的中點(diǎn),點(diǎn)為直線上一點(diǎn),將射線順時(shí)針旋轉(zhuǎn)交直線于點(diǎn),若,當(dāng)面積為時(shí),直接寫出線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解游客對(duì)某景區(qū)的滿意度,特對(duì)游客采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,調(diào)查的結(jié)果分為A,B,CD四類,其含意依次表示為非常滿意、比較滿意、基本滿意不太滿意,劃分類別后的數(shù)據(jù)整理如表1(不完整).

1)求表中的數(shù)據(jù)ab

2)如果根據(jù)表中頻數(shù)畫扇形統(tǒng)計(jì)圖,那么類別為B的頻數(shù)所對(duì)應(yīng)的扇形圓心角是幾度?

3)已知該景區(qū)每日游客限流3000名,估計(jì)一天的游客中類別C的游客人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長分別為10cm4cm的矩形紙片沿著虛線剪成兩個(gè)全等的梯形紙片.裁剪線與矩形較長邊所夾的銳角是45°,則梯形紙片中較短的底邊長為(  )

A.2cmB.2.5cmC.3cmD.3.5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,DAB上一點(diǎn),已知AC=10,AC2=AD·AB

1)證明ACD∽△ABC

2)如圖2,過點(diǎn)CCEAB,且CE=6,連結(jié)DEBC于點(diǎn)F;

若四邊形ADEC是平行四邊形,求的值;

設(shè)AD=x,=y,求y關(guān)于x的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長是9,點(diǎn)邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)邊上一點(diǎn),,連接,把正方形沿折疊,使點(diǎn),分別落在點(diǎn),處,當(dāng)點(diǎn)落在線段上時(shí),線段的長為__________

查看答案和解析>>

同步練習(xí)冊(cè)答案