【題目】已知:PA=,PB=4,以AB為一邊作正方形ABCD,使P、D兩點落在直線AB的兩側(cè).
(1)如圖,當∠APB=45°時,求AB及PD的長;
(2)當∠APB變化,且其它條件不變時,求PD的最大值,及相應∠APB的大。
【答案】
【1】(1)①如圖11,作AE⊥PB于點E.
∵△APE中,∠APE=45°,,
∴,
.
∵,
∴.
在Rt△ABE中,∠AEB=90°,
∴.…………1分
②解法一:如圖12,因為四邊形ABCD為正方形,可將
△PAD繞點A順時針旋轉(zhuǎn)90°得到△,
可得△≌△,,.
∴=90°,=45°,=90°.
∴.分
∴.…………2分
解法二:如圖13,過點P作AB的平行線,與DA的延長線交于F,設(shè)DA的 延長線交PB于G.
在Rt△AEG中,可得
,
,.
在Rt△PFG中,可得,.
在Rt△PDF中,可得
.
【2】(2)如圖14所示,將△PAD繞點A順時針旋轉(zhuǎn)90°得到△, PD 的最大值即為的最大值.
∵△中,,,,
且P、D兩點落在直線AB的兩側(cè),
∴當三點共線時,取得最大值(見圖15).
此時,即的最大值為6. …………4分
此時∠APB=180°-=135°. …………5分
【解析】
(1)作輔助線,過點A作AE⊥PB于點E,在Rt△PAE中,已知∠APE,AP的值,根據(jù)三角函數(shù)可將AE,PE的值求出,由PB的值,可求BE的值,在Rt△ABE中,根據(jù)勾股定理可將AB的值求出;
求PD的值有兩種解法,解法一:可將△PAD繞點A順時針旋轉(zhuǎn)90°得到△P'AB,可得△PAD≌△P'AB,求PD長即為求P′B的長,在Rt△AP′P中,可將PP′的值求出,在Rt△PP′B中,根據(jù)勾股定理可將P′B的值求出;
解法二:過點P作AB的平行線,與DA的延長線交于F,交PB于G,在Rt△AEG中,可求出AG,EG的長,進而可知PG的值,在Rt△PFG中,可求出PF,在Rt△PDF中,根據(jù)勾股定理可將PD的值求出;
(2)將△PAD繞點A順時針旋轉(zhuǎn)90°,得到△P'AB,PD的最大值即為P'B的最大值,故當P'、P、B三點共線時,P'B取得最大值,根據(jù)P'B=PP'+PB可求P'B的最大值,此時∠APB=180°-∠APP'=135°.
(1)①
如圖,作AE⊥PB于點E,
∵△APE中,∠APE=45°,PA=,
∴AE/span>=PE=×=1,
∵PB=4,∴BE=PB﹣PE=3,
在Rt△ABE中,∠AEB=90°,
∴AB==.
②解法一:
如圖,因為四邊形ABCD為正方形,可將
△PAD繞點A順時針旋轉(zhuǎn)90°得到△P'AB,
可得△PAD≌△P'AB,PD=P'B,PA=P'A.
∴∠PAP'=90°,∠APP'=45°,∠P'PB=90°
∴PP′=PA=2,
∴PD=P′B===;
解法二:
如圖,過點P作AB的平行線,與DA的延長線交于F,與DA的
延長線交PB于G.
在Rt△AEG中,
可得AG===,EG=,PG=PE﹣EG=.
在Rt△PFG中,
可得PF=PGcos∠FPG=PGcos∠ABE=,FG=.
在Rt△PDF中,可得,
PD===.
(2)如圖所示,
將△PAD繞點A順時針旋轉(zhuǎn)90°
得到△P'AB,PD的最大值即為P'B的最大值,
∵△P'PB中,P'B<PP'+PB,PP′= PA=2,PB=4,
且P、D兩點落在直線AB的兩側(cè),
∴當P'、P、B三點共線時,P'B取得最大值(如圖)
此時P'B=PP'+PB=6,即P'B的最大值為6.
此時∠APB=180°﹣∠APP'=135度.
考查綜合應用解直角三角形、直角三角形性質(zhì),進行邏輯推理能力和運算能力,在解題過程中通過添加輔助線,確定P′B取得最大值時點P′的位置.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在某海域,一般指揮船在C處收到漁船在B處發(fā)出的求救信號,經(jīng)確定,遇險拋錨的漁船所在的B處位于C處的南偏西45°方向上,且BC=60海里;指揮船搜索發(fā)現(xiàn),在C處的南偏西60°方向上有一艘海監(jiān)船A,恰好位于B處的正西方向.于是命令海監(jiān)船A前往搜救,已知海監(jiān)船A的航行速度為30海里/小時,問漁船在B處需要等待多長時間才能得到海監(jiān)船A的救援?(參考數(shù)據(jù):,,結(jié)果精確到0.1小時)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知AM是⊙O直徑,弦BC⊥AM,垂足為點N,弦CD交AM于點E,連按AB和BE.
(1)如圖1,若CD⊥AB,垂足為點F,求證:∠BED=2∠BAM;
(2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE=2CN;
(3)如圖3,AB=CD,BE:CD=4:7,AE=11,求EM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙C 經(jīng)過原點且與兩坐標軸分別交于點 A 與點 B,點 B 的坐標為 ,M 是圓上一點,∠BMO=120°.⊙C的圓心C的坐標是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=a(x﹣1)(x﹣3)(a>0)與x軸交于A、B兩點,拋物線上另有一點C在x軸下方,且使△OCA∽△OBC.
(1)求線段OC的長度;
(2)設(shè)直線BC與y軸交于點M,點C是BM的中點時,求直線BM和拋物線的解析式;
(3)在(2)的條件下,直線BC下方拋物線上是否存在一點P,使得四邊形ABPC面積最大?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論(1)4a+2b+c>0;(2)方程ax2+bx+c=0兩根之和小于零;(3)y隨x的增大而增大;(4)一次函數(shù)y=x+bc的圖象一定不過第二象限.其中正確的個數(shù)是( 。
A. 4 個B. 3個C. 2個D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點A和B(3,0),與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)若點M是拋物線上在x軸下方的動點,過M作MN∥y軸交直線BC于點N,求線段MN的最大值;
(3)E是拋物線對稱軸上一點,F是拋物線上一點,是否存在以A,B,E,F為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次數(shù)學活動中,黑板上畫著如圖所示的圖形,活動前老師在準備的四張卡片(大小、顏色、形狀相同)的正面上分別寫有如下四個等式中的一個等式:①;②;③;④;小英同學閉上眼睛從四張卡片中隨機抽出一張,再從剩下的卡片中隨機抽出另一張,請結(jié)合圖形回答下列問題:
(1)當抽得②和④時,用②和④作條件能否判定四邊形是平行四邊形,請說明理由;
(2)請你用樹狀圖或表格表示抽取兩張卡片上的條件的所有可能出現(xiàn)的結(jié)果(用序號表示)并求以已經(jīng)抽取的兩張卡片上的條件為已知,使四邊形不能構(gòu)成平行四邊形的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是的直徑,點C是外一點,連接AC,BC,AC與交于點D,弦DE與直徑AB交于點F,.
求證:BC是的切線;
若,,,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com