【題目】已知,在平面直角坐標系中,A(a,0)、B(0,b),a、b滿足 +|a3 |=0.C為AB的中點,P是線段AB上一動點,D是x軸正半軸上一點,且PO=PD,DE⊥AB于E.
(1)求∠OAB的度數(shù);
(2)設(shè)AB=6,當點P運動時,PE的值是否變化?若變化,說明理由;若不變,請求PE的值;
(3)設(shè)AB=6,若∠OPD=45°,求點D的坐標.
【答案】(1) 45°;(2)PE的值不變,PE=3;(3)D(6,0).
【解析】
試題(1)根據(jù)非負數(shù)的性質(zhì)即可求得a,b的值,從而得到△AOB是等腰直角三角形,據(jù)此即可求得;
(2)根據(jù)等腰三角形的性質(zhì)以及三角形的外角的性質(zhì)可以得到∠POC=∠DPE,即可證得△POC≌△DPE,則OC=PE,OC的長度根據(jù)等腰直角三角形的性質(zhì)可以求得;
(3)利用等腰三角形的性質(zhì),以及外角的性質(zhì)證得∠POC=∠DPE,即可證得△POC≌△DPE,根據(jù)全等三角形的對應(yīng)邊相等,即可求得OD的長,從而求得D的坐標.
試題解析:(1)根據(jù)題意得:
,
解得:a=b=,
∴OA=OB,
又∵∠AOB=90°
∴△AOB為等腰直角三角形,
∴∠OAB=45°.
(2)PE的值不變.理由如下:
∵△AOB為等腰直角三角形,且AC=BC,
∴∠AOC=∠BOC=45°
又∵OC⊥AB于C,
∵PO=PD
∴∠POD=∠PDO
又∵∠POD=45°+∠POC∠PDO=45°+∠DPE,
∴∠POC=∠DPE
在△POC和△DPE中,
∴△POC≌△DPE,
∴OC=PE
又OC=AB=3
∴PE=3;
(3)∵OP=PD,
∴∠POD=∠PDO=,
則∠PDA=180°-∠PDO=180°-67.5°=112.5°,
∵∠POD=∠A+∠APD,
∴∠APD=67.5°-45°=22.5°,
∴∠BPO=180°-∠OPD-∠APD=112.5°,
∴∠PDA=∠BPO
則在△POB和△DPA中,
,
∴△POB≌△DPA.
∴PA=OA=,
∴DA=PB=6-,
∴OD=OA-DA=-(6-)=-6
∴D(6,0).
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,3).延長CB交x軸于點A1 , 作正方形A1B1C1C;延長C1B1交x軸于點A2 , 作正方形A2B2C2C1…,按這樣的規(guī)律進行下去,第4個正方形的邊長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩條長度均為2的線段和線段互相重合,將沿直線向左平移個單位長度,將沿直線向右也平移個單位長度,當、是線段的三等分點時,則的值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點E,∠ACD=40°,則∠DEA=( )
A.40°
B.110°
C.70°
D.140°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,和的平分線相交于點O,過O點作交AB于點E,交AC于點F,過點O作于D,下列四個結(jié)論.
點O到各邊的距離相等設(shè),,則,正確的結(jié)論有 個.
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時間后,到達位于燈塔P的南偏東30°方向上的B處,則此時輪船所在位置B處與燈塔P之間的距離為( )
A.60海里
B.45海里
C.20 海里
D.30 海里
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:如圖,在直角坐標系中,有菱形OABC,A點的坐標為(10,0),對角線OB、AC相交于D點,雙曲線y= (x>0)經(jīng)過D點,交BC的延長線于E點,且OBAC=160,有下列四個結(jié)論:
①雙曲線的解析式為y= (x>0);②E點的坐標是(5,8);③sin∠COA= ;④AC+OB=12 .其中正確的結(jié)論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).
(1)求拋物線的函數(shù)表達式;
(2)若點P在拋物線上,且S△AOP=4S△BOC , 求點P的坐標;
(3)如圖b,設(shè)點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,BC=3,AB=8,E、F為AB、CD邊上的中點,如圖1,A在原點處,點B在y軸正半軸上,點C在第一象限,若點A從原點出發(fā),沿x軸向右以每秒1個單位長度的速度運動,則點B隨之沿y軸下滑,并帶動矩形ABCD在平面上滑動,如圖2,設(shè)運動時間表示為t秒,當B到達原點時停止運動.
(1)當t=0時,求點F的坐標及FA的長度;
(2)當t=4時,求OE的長及∠BAO的大;
(3)求從t=0到t=4這一時段點E運動路線的長;
(4)當以點F為圓心,F(xiàn)A為半徑的圓與坐標軸相切時,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com