【題目】如圖,將△ABC紙片沿DE折疊,使點A落在點A′處,且A′B平分∠ABC,A′C平分∠ACB,若∠BA′C=110°,則∠1+∠2=_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,AD垂直于過點C的切線,垂足為D,CE垂直AB,垂足為E.延長DA交⊙O于點F,連接FC,F(xiàn)C與AB相交于點G,連接OC.
(1)求證:CD=CE;
(2)若AE=GE,求證:△CEO是等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(-1,5),B(-2,0),C(-4,3).
(1)請畫出△ABC關(guān)于y軸對稱的△A,B,C,,并寫出點C的坐標(biāo);
(2)求△ABC的面積;
(3)在y軸上畫出點P的位置,使線段PA+PB的值最小,并直接寫出PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O為△ABC的外接圓,BC為⊙O的直徑,AE為⊙O的切線,過點B作BD⊥AE于D.
(1)求證:∠DBA=∠ABC;
(2)如果BD=1,tan∠BAD=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩名同學(xué)在同一個學(xué)校上學(xué),B同學(xué)上學(xué)的路上經(jīng)過A同學(xué)家。A同學(xué)步行,B同學(xué)騎自行車,某天,A,B兩名同學(xué)同時從家出發(fā)到學(xué)校,如圖,A表示A同學(xué)離B同學(xué)家的路程A(m)與行走時間(min)之間的函數(shù)關(guān)系圖象,B表示B同學(xué)離家的路程B(m)與行走時間(min)之間的函數(shù)關(guān)系圖象.
(1)A,B兩名同學(xué)的家相距________m.
(2)B同學(xué)走了一段路后,自行車發(fā)生故障,進(jìn)行修理,修理自行車所用的時間是 _____min.
(3)B同學(xué)出發(fā)后______min與A同學(xué)相遇.
(4)求出A同學(xué)離B同學(xué)家的路程A與時間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓O的直徑,以AO為直徑作半圓M,C為OB的中點,D在半圓M上,且CD⊥MD,延長AD交半圓O于點E,且AB=4,則圓中陰影部分的面積為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MN交AB于點D,連接CD.若CD=AC,∠A=50°,則∠ACB的度數(shù)為( )
A. 90°B. 95°C. 100°D. 105°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一些完全相同的正三角形按如圖所示規(guī)律擺放,第一個圖形有1個正三角形,第二個圖形有5個正三角形,第三個圖形有12個正三角形,…,按此規(guī)律排列下去,第六個圖形中正三角形的個數(shù)是( 。
A. 35 B. 41 C. 45 D. 51
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,若分得的兩個小三角形中一個三角形為等腰三角形,另一個三角形的三個內(nèi)角與原來三角形的三個內(nèi)角分別相等,則稱這條線段叫做這個三角形的“等角分割線”.
例如,等腰直角三角形斜邊上的高就是這個等腰直角三角形的一條“等角分割線”.
(1)如圖1,在△ABC中,D是邊BC上一點,若∠B=30°,∠BAD=∠C=40°,求證: AD為△ABC的“等角分割線”;
(2)如圖2,△ABC中,∠C=90°,∠B=30°;
①畫出△ABC的“等角分割線”,寫出畫法并說明理由;
②若BC=3,求出①中畫出的“等角分割線”的長度.
(3)在△ABC中,∠A=24°,若△ABC存在“等角分割線”CD,直接寫出所有符合要求的∠B的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com