【題目】如圖,兩直線l1ykx2b+1l2y=(1kx+b1交于x軸上一點A,與y軸分別交于點B、C,若A的橫坐標(biāo)為2.

1)求這兩條直線的解析式;

2)求ABC的面積.

【答案】1yx3,y=﹣x+1;(24

【解析】

1)把A點坐標(biāo)分別代入y=kx-2b+1y=1-kx+b-1得到關(guān)于kb的方程組,然后解方程組即可確定這兩條直線的解析式;
2)先根據(jù)(1)中的解析式確定B點和C點坐標(biāo),然后根據(jù)三角形面積公式求解.

解:(1)把A2,0)分別代入ykx2b+1y=(1kx+b1得:

,解得,

所以直線l1的解析式為yx3,直線l2的解析式為y=﹣x+1;

2)當(dāng)x0時,yx3=﹣3,則B點坐標(biāo)為(0,﹣3);當(dāng)x0時,y=﹣x+11,則C點坐標(biāo)為(0,1),

ABC的面積=×1+3×24

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為選拔參加八年級數(shù)學(xué)“拓展性課程”活動人選,數(shù)學(xué)李老師對本班甲、乙兩名學(xué)生以前經(jīng)歷的10次測驗成績(分)進(jìn)行了整理、分析(見圖①):

1)寫出ab的值;

2)如要推選1名學(xué)生參加,你推薦誰?請說明你推薦的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】魯能巴蜀中學(xué)2018年校藝術(shù)節(jié)巴蜀好聲音獨唱預(yù)選賽中,初二年級25名同學(xué)的成績滿分為10統(tǒng)計如下:,,,,,,,,,,,,,,,10

分及以上為A級,分為B包括分和分為C包括分和,分以下為D請把下面表格補充完整;

等級

A

B

C

D

人數(shù)

4

8

8位同學(xué)成績的中位數(shù)是多少,眾數(shù)是多少;

若成績?yōu)?/span>A級的同學(xué)將參加學(xué)校的匯演,請求出初二年級A級同學(xué)的平均成績?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:對于二次三項式 ,能直接用公式法進(jìn)行因式分解,得到 ,但對于二次三項式 ,就不能直接用公式法了.我們可以采用這樣的方法:在二次三項式 中先加上一項 ,使其成為完全平方式,再減去 這項,使整個式子的值不變,于是:

像這樣把二次三項式分解因式的方法叫做添(拆)項法.

問題解決:請用上述方法將二次三項式 分解因式.

2)拓展應(yīng)用:二次三項式 有最小值或有最大值嗎?如果有,請你求出來并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,有四個點A(﹣8,3)、B(﹣4,5)、C0,n)、Dm0),當(dāng)四邊形ABCD的周長最短時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中建立平面直角坐標(biāo)系,ABC的三個頂點都在網(wǎng)格的格點上.

1)把ABC向下平移6個單位長度,再向左平移5個單位長度,得到A1B1C1.請直接寫出點A1、點B1和點C1的坐標(biāo).(不需要畫圖)

2)求ABC的面積.

3)點D的坐標(biāo)為(3,1),在坐標(biāo)軸上是否存在點E使得BDE的面積等于ABC的面積,若存在,請直接寫出點E的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù) ,則下列結(jié)論不正確的是( )
A.圖象必經(jīng)過點(-1,5)
B.圖象的兩個分支分布在第二、四象限
C.y隨x的增大而增大
D.若x>1,則-5<y<0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.

(1)操作發(fā)現(xiàn)
如圖2,固定△ABC,使△DEC繞點C旋轉(zhuǎn),當(dāng)點D恰好落在AB邊上時,填空:
①線段DE與AC的位置關(guān)系是;
②設(shè)△BDC的面積為S1 , △AEC的面積為S2 , 則S1與S2的數(shù)量關(guān)系是.

(2)猜想論證
當(dāng)△DEC繞點C旋轉(zhuǎn)到圖3所示的位置時,小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請你證明小明的猜想.

(3)拓展探究
已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,DE//AB交BC于點E(如圖4).若在射線BA上存在點F,使 ,請直接寫出相應(yīng)的BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:①abc<0;② ;③ac-b+1=0;④OA·OB= .其中正確結(jié)論的個數(shù)是( )

A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習(xí)冊答案