【題目】為選拔參加八年級(jí)數(shù)學(xué)“拓展性課程”活動(dòng)人選,數(shù)學(xué)李老師對(duì)本班甲、乙兩名學(xué)生以前經(jīng)歷的10次測(cè)驗(yàn)成績(jī)(分)進(jìn)行了整理、分析(見(jiàn)圖①):

1)寫出ab的值;

2)如要推選1名學(xué)生參加,你推薦誰(shuí)?請(qǐng)說(shuō)明你推薦的理由.

【答案】1a=84.5,b=81;(2)甲,理由:兩人的平均數(shù)相同且甲的方差小于乙,說(shuō)明甲成績(jī)穩(wěn)定.

【解析】

(1)依據(jù)中位數(shù)和眾數(shù)的定義進(jìn)行計(jì)算即可;

(2)依據(jù)平均數(shù)、中位數(shù)、方差以及眾數(shù)的角度分析,即可得到哪個(gè)學(xué)生的水平較高.

(1)甲組數(shù)據(jù)排序后,最中間的兩個(gè)數(shù)據(jù)為:8485,故中位數(shù)a(84+85)=84.5,乙組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)為81,故眾數(shù)b=81;

(2)甲,理由:兩人的平均數(shù)相同且甲的方差小于乙,說(shuō)明甲成績(jī)穩(wěn)定;

或:乙,理由:在90≤x≤100的分?jǐn)?shù)段中,乙的次數(shù)大于甲.(答案不唯一,理由須支撐推斷結(jié)論)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在任意四邊形ABCD中,MN,PQ分別是AB,BC,CD,DA上的點(diǎn),對(duì)于四邊形MNPQ的形狀,以下結(jié)論中,錯(cuò)誤的是  

A. 當(dāng)M,N,P,Q是各邊中點(diǎn),四邊MNPQ一定為平行四邊形

B. 當(dāng)M,N,P,Q是各邊中點(diǎn),且時(shí),四邊形MNPQ為正方形

C. 當(dāng)MN、PQ是各邊中點(diǎn),且時(shí),四邊形MNPQ為菱形

D. 當(dāng)M,NP、Q是各邊中點(diǎn),且時(shí),四邊形MNPQ為矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的推理過(guò)程,在括號(hào)內(nèi)填上推理的依據(jù),如圖:

∵∠1+2=180°,∠2+4=180°(已知)

∴∠1=4( )

ca( )

又∵∠2+3=180°(已知 )

3=6( )

∴∠2+6=180°( )

ab( )

cb( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,∠A是銳角,E為邊AD上一點(diǎn),△ABE沿著BE折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)F恰好落在邊CD上,連接EFBF,給出下列結(jié)論:

①若∠A=70°,則∠ABE=35°;②若點(diǎn)FCD的中點(diǎn),則SABES菱形ABCD

下列判斷正確的是( 。

A. ①,②都對(duì)B. ①,②都錯(cuò)C. ①對(duì),②錯(cuò)D. ①錯(cuò),②對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為4cm的正方形ABCD中,點(diǎn)P,Q同時(shí)從點(diǎn)A出發(fā),以相同的速度分別沿ABCADC的路線運(yùn)動(dòng),則當(dāng)PQcm時(shí),點(diǎn)CPQ的距離為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,三角形ABC的頂點(diǎn)坐標(biāo)分別為,,把三角形ABC向右平移2個(gè)單位長(zhǎng)度,再向下平移4個(gè)單位長(zhǎng)度后得到三角形

1)畫出三角形ABC和平移后的圖形;

2)寫出三個(gè)頂點(diǎn),,的坐標(biāo);

3)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD中,點(diǎn)EBD上一點(diǎn),過(guò)點(diǎn)EEFAE交射線CB于點(diǎn)F,連結(jié)CE

1)已知點(diǎn)F在線段BC上.

①若AB=BE,求∠DAE度數(shù);

②求證:CE=EF;

2)已知正方形邊長(zhǎng)為2,且BC=2BF,請(qǐng)直接寫出線段DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】真假命題的思考.

一天,老師在黑板上寫下了下列三個(gè)命題:

①垂直于同一條直線的兩條直線平行;

②若,則

③若的兩邊所在直線分別平行,則.

小明和小麗對(duì)話如下,

小明:“命題①是真命題,好像可以證明.”

小麗:“命題①是假命題,好像少了一些條件.”

1)結(jié)合小明和小麗的對(duì)話,談?wù)勀愕挠^點(diǎn).如果你認(rèn)為是真命題,請(qǐng)證明:如果你認(rèn)為是假命題,請(qǐng)?jiān)黾右粋(gè)適當(dāng)?shù)臈l件,使之成真命題.

2)請(qǐng)?jiān)诿}②、命題③中選一個(gè),如果你認(rèn)為它是真命題,請(qǐng)證明:如果你認(rèn)為它是假命題,請(qǐng)舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,兩直線l1ykx2b+1l2y=(1kx+b1交于x軸上一點(diǎn)A,與y軸分別交于點(diǎn)BC,若A的橫坐標(biāo)為2.

1)求這兩條直線的解析式;

2)求ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案