【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點D,AE∥BD交CB的延長線于點E.若∠E=35°,則∠BAC的度數(shù)為( )
A. 40° B. 45° C. 60° D. 70°
【答案】A
【解析】
根據(jù)平行線的性質(zhì)可得∠CBD的度數(shù),根據(jù)角平分線的性質(zhì)可得∠CBA的度數(shù),根據(jù)等腰三角形的性質(zhì)可得∠C的度數(shù),根據(jù)三角形內(nèi)角和定理可得∠BAC的度數(shù).
解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,
∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.
故選A.
“點睛”考查了平行線的性質(zhì),角平分線的性質(zhì),等腰三角形的性質(zhì)和三角形內(nèi)角和定理.關(guān)鍵是得到∠C=∠CBA=70°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點,EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓柱底面半徑為cm,高為9cm,點A、B分別是圓柱兩底面圓周上的點,且A、B在同一母線上,用一根棉線從A點順著圓柱側(cè)面繞3圈到B點,則這根棉線的長度最短為( )
A. 12cm B. cm C. 15cm D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖像與軸交于點,一次函數(shù)的圖像分別與軸、軸交于點,且與的圖像交于點.
(1)求的值;
(2)若,則的取值范圍是 ;
(3)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:有些代數(shù)恒等式可以利用平面圖形的面積來表示,如:
就可以用如圖所示的面積關(guān)系來說明。
(1)請根據(jù)如圖寫出代數(shù)恒等式,并根據(jù)所寫恒等式計算:
(2)若求的值;
(3)現(xiàn)有如圖中的彩色卡片:A型、B型、C型,把這些卡片不重疊不留縫隙地貼在棱長為的100個立方體表面進(jìn)行裝飾,A型、B型、C型卡片的單價分別為0.7元/張、0.5元/張、0.4元/張,共需多少費用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架梯子AB長13米,斜靠在一面墻上,梯子底端離墻5米.(1)這個梯子的頂端距地面有多高?(2)如果梯子的頂端下滑了5米,那么梯子的底端在水平方向滑動了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD的周長為36,對角線AC、BD相交于點O,點E是CD的中點,BD=12,則△DOE的周長為( 。
A. 15 B. 18 C. 21 D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點,OA=3,OB=4,OC=5,將線段BO以點B為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點B逆時針旋轉(zhuǎn)60°得到;②點O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+3;其中正確的結(jié)論是( )
A. ①②③ B. ①③④ C. ②③④ D. ①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC中,D、E是AB、AC上點,AB=7.8,AD=3,AC=6,AE=3.9,試判斷△ADE與△ABC是否會相似.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com