精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABC中,BAC=90°, BCx軸,拋物線y=ax2-2ax+3經過ABC的三個頂點,并且與x軸交于點D、E,點A為拋物線的頂點.

(1)求拋物線的解析式;

(2)連接CD,在拋物線的對稱軸上是否存在一點P使PCD為直角三角形,若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.

【答案】(1)y=-x2+2x+3;(2)P1(1,4) P2(1,-2) .

【解析】

試題(1)根據題意知點B的坐標為(0,3)拋物線的對稱軸方程為x=1,所以A點坐標為(1,4),C點坐標為(2,3),由此可求拋物線的解析式.

(2)分兩種情況:CD為直角邊,CD為斜邊進行討論,由勾股定理得到方程即可求出P點坐標.

試題解析:(1)y=ax2-2ax+3

它的對稱軸為直線x=

令x=0,則y=3,

B(0,3)

根據拋物線的對稱性知:C(2,3),A(1,4)

A1,4)代入y=ax2-2ax+3,得:a=-1

拋物線的解析式為:y=-x2+2x+3;

(2)存在.分兩種情況:

(1)當CD為直角邊時,設P(1,a):

i)當點P在x軸上方時,DP=,CP=,

CD2+CA2=AD2

18+2=4+a2

即:a2=16

解得a=±4(負舍去)

a=4

ii)當點P在x軸下方時,CD2+DP2=CP2

解得:a=-2

(2)當CD為斜邊時,同理可以得出:a=

綜上所述,點P的坐標分別為:P1(1,4) P2(1,-2)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點D,滿足AD=AB,將線段AC繞點A逆時針旋轉α (0°<α <360°),得到線段AC,連接DC’,當DC’//BC時,旋轉角度α 的值為_________,

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為

)請直接寫出袋子中白球的個數.

)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當陽光與水平線成45°角時,測得旗桿AB落在坡上的影子BD的長為8米,落在墻上的影子CD的長為6米,求旗桿AB的高(結果保留根號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線經過A(-3,0),B(0,-3),C(1,0)三點.

(1)求拋物線的解析式;

(2)若點M為第三象限內拋物線上一動點,M的橫坐標為m,△AMB的面積為S.S

關于m的函數關系式,并求出S的最大值;

(3)若點P是拋物線上的動點,Q是直線y=-x上的動點,判斷有幾個位置能夠使得點P、Q、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】RtABC中,ABAC,D點為RtABC外一點,且BDCDDF為∠BDA的平分線,當∠ACD15°,下列結論:①∠ADC45°;②ADAF;③AD+AFBD;④BCCE2D,其中正確的是( )

A.①③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】傳統(tǒng)節(jié)日端午節(jié)的早晨,小文媽媽為小文準備了四個粽子作早點:一個棗餡粽,一個肉餡粽,兩個花生餡粽,四個粽子除內部餡料不同外,其它一切均相同.

1)小文吃前兩個粽子剛好都是花生餡粽的概率為 ;

2)若媽媽在早點中給小文再增加一個花生餡的粽子,則小文吃前兩個粽子都是花生餡粽的可能性是否會增大?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了了解學生關注熱點新聞的情況,“兩會”期間,小明對班級同學一周內收看“兩會”新聞的次數情況作了調查,調查結果統(tǒng)計如圖所示(其中男生收看次的人數沒有標出).

根據上述信息,解答下列各題:

×

(1)該班級女生人數是__________,女生收看“兩會”新聞次數的中位數是________;

(2)對于某個群體,我們把一周內收看某熱點新聞次數不低于次的人數占其所在群體總人數的百分比叫做該群體對某熱點新聞的“關注指數”.如果該班級男生對“兩會”新聞的“關注指數”比女生低,試求該班級男生人數;

(3)為進一步分析該班級男、女生收看“兩會”新聞次數的特點,小明給出了男生的部分統(tǒng)計量(如表).

統(tǒng)計量

平均數(次)

中位數(次)

眾數(次)

方差

該班級男生

根據你所學過的統(tǒng)計知識,適當計算女生的有關統(tǒng)計量,進而比較該班級男、女生收看“兩會”新聞次數的波動大小.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在等邊ABC中,線段AMBC邊上的中線.動點D在直線AM上時,以CD為一邊在CD的下方作等邊CDE,連結BE

(1)求∠CAM的度數;

(2)若點D在線段AM上時,求證:ADCBEC;

(3)當動D直線AM上時,設直線BE與直線AM的交點為O,試判斷AOB是否為定值?并說明理由.

查看答案和解析>>

同步練習冊答案