【題目】已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點D,滿足AD=AB,將線段AC繞點A逆時針旋轉(zhuǎn)α (0°<α <360°),得到線段AC’,連接DC’,當DC’//BC時,旋轉(zhuǎn)角度α 的值為_________,
【答案】15或255°
【解析】
如下圖,設直線DC′與AB相交于點E,
∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,
∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,
∴AE=AD,
又∵AD=AB,AC′=AC,
∴AE=AB=AC=AC′,
∴∠C′=30°,
∴∠EAC′=60°,
∴∠CAC′=60°-45°=15°, 即當DC′∥BC時,旋轉(zhuǎn)角=15°;
同理,當DC′′∥BC時,旋轉(zhuǎn)角=180°-45°-60°=255°;
綜上所述,當旋轉(zhuǎn)角=15°或255°時,DC′//BC.
故答案為:15°或255°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABE,AB、AE的垂直平分線m1、m2分別交BE于點C、D,且BC=CD=DE.
(1)求證:△ACD是等邊三角形;
(2)求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下列結論:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤SBDE:S△ACD=BD:AC,其中正確的個數(shù)( )
A.5個B.4個C.3個D.2個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)>0)的對稱軸與x軸交于點B,與直線l:交于點C,點A是該二次函數(shù)圖像與直線l在第二象限的交點,點D是拋物線的頂點,已知AC∶CO=1∶2,∠DOB=45°,△ACD的面積為2.
(1) 求拋物線的函數(shù)關系式;
(2) 若點P為拋物線對稱軸上的一個點,且∠POC=45°,求點P坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的兩個外角平分線交于點P,則下列結論正確的是( 。
①PA=PC ②BP平分∠ABC ③P到AB,BC的距離相等 ④BP平分∠APC.
A. ①② B. ①④ C. ②③ D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅在計算時,拿出 1 張等邊三角形紙片按如圖所示方式進行操作.
①如圖1,把 1 個等邊三角形等分成 4 個完全相同的等邊三角形,完成第 1 次操作;
②如圖 2,再把①中最上面的三角形等分成 4 個完全相同的等邊三角形,完成第 2 次操作;
③如圖 3,再把②中最上面的三角形等分成 4 個完全相同的等邊三角形,······依次重復上述操作.可得的值最接近的數(shù)是( )
A.B.C.D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段a及如圖形狀的圖案.
(1)用直尺和圓規(guī)作出圖中的圖案,要求所作圖案中圓的半徑為a(保留作圖痕跡)
(2)當a=6時,求圖案中陰影部分正六邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場家電專柜購進一批甲,乙兩種電器,甲種電器共用了10 350元,乙種電器共用了9 600元,甲種電器的件數(shù)是乙種電器的1.5倍,甲種電器每件的進價比乙種電器每件的進價少90元.
(1)甲、乙兩種電器各購進多少件?
(2)商場購進兩種電器后,按進價提高40%后標價銷售,很快全部售完,求售完這批電器商場共獲利多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°, BC∥x軸,拋物線y=ax2-2ax+3經(jīng)過△ABC的三個頂點,并且與x軸交于點D、E,點A為拋物線的頂點.
(1)求拋物線的解析式;
(2)連接CD,在拋物線的對稱軸上是否存在一點P使△PCD為直角三角形,若存在,求出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com