【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點,過點A作AF∥BC交BE的延長線于F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
【答案】(1)見解析;
(2)四邊形ADCF是正方形.
【解析】
試題分析:(1)由E是AD的中點,AF∥BC,易證得△AEF≌△DEB,即可得AD=BD,又由在△ABC中,∠BAC=90°,AD是中線,根據(jù)直角三角形斜邊的中線等于斜邊的一半,即可證得AD=BD=CD=BC,即可證得:AD=AF;
(2)由AF=BD=DC,AF∥BC,可證得:四邊形ADCF是平行四邊形,又由AB=AC,根據(jù)三線合一的性質(zhì),可得AD⊥BC,AD=DC,繼而可得四邊形ADCF是正方形.
試題解析:(1)∵AF∥BC,
∴∠EAF=∠EDB,
∵E是AD的中點,
∴AE=DE,
在△AEF和△DEB中,
∠EAF=∠EDB,AE=DE,∠AEF=∠DEB,
∴△AEF≌△DEB(ASA),
∴AF=BD,
∵在△ABC中,∠BAC=90°,AD是中線,
∴AD=BD=DC=BC,
∴AD=AF;
(2)四邊形ADCF是正方形.
∵AF=BD=DC,AF∥BC,
∴四邊形ADCF是平行四邊形,
∵AB=AC,AD是中線,
∴AD⊥BC,
∵AD=AF,
∴四邊形ADCF是正方形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、B、O是正方形網(wǎng)格上的三個格點,⊙O的半徑為OA,點P是優(yōu)弧 上的一點,則cos∠APB的值是( )
A.45°
B.1
C.
D.無法確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,半徑為5的⊙A中,弦BC,ED所對的圓心角分別是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,則弦BC的長等于( )
A.8
B.10
C.11
D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某同學報名參加校運動會,有以下5個項目可供選擇:
徑賽項目:100m,200m,400m(分別用A1、A2、A3表示);
田賽項目:跳遠,跳高(分別用B1、B2表示).
該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個田賽項目和一個徑賽項目的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.
(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃用元從廠家購進臺新型電子產(chǎn)品,已知該廠家生產(chǎn)甲、乙、丙三種不同型號的電子產(chǎn)品,設甲、乙型設備應各買入臺,其中每臺的價格、銷售獲利如下表:
甲型 | 乙型 | 丙型 | |
價格(元/臺) | |||
銷售獲利(元/臺) |
購買丙型設備 臺(用含的代數(shù)式表示) ;
若商場同時購進三種不同型號的電子產(chǎn)品(每種型號至少有一臺),恰好用了元,則商場有哪幾種購進方案?
在第題的基礎上,為了使銷售時獲利最多,應選擇哪種購進方案?此時獲利為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
材料一:分解因式是將一個多項式化為若干個整式積的形式的變形,“十字相乘法”可把某些二次三項式分解為兩個一次式的乘積,具體做法如下:對關于,的二次三項式,如圖1,將項系數(shù),作為第一列,項系數(shù),作為第二列,若恰好等于項的系數(shù),那么可直接分解因式為:
示例1:分解因式:
解:如圖2,其中,,而;
∴;
示例2:分解因式:.
解:如圖3,其中,,而;
∴;
材料二:關于,的二次多項式也可以用“十字相乘法”分解為兩個一次式的乘積.如圖4,將作為一列,作為第二列,作為第三列,若,,,即第1、2列,第1、3列和第2、3列都滿足十字相乘規(guī)則,則原式分解因式的結(jié)果為:;
示例3:分解因式:.
解:如圖5,其中,,;
滿足,;
∴
請根據(jù)上述材料,完成下列問題:
(1)分解因式: ; ;
(2)若,,均為整數(shù),且關于,的二次多項式可用“十字相乘法”分解為兩個一次式的乘積,求出的值,并求出關于,的方程的整數(shù)解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com