【題目】如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,C,D均在格點(diǎn)上,ABCD相交于點(diǎn)E.

(Ⅰ)AB的長等于   

(Ⅱ)點(diǎn)F是線段DE的中點(diǎn),在線段BF上有一點(diǎn)P,滿足,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出點(diǎn)P,并簡要說明點(diǎn)P的位置是如何找到的(不要求證明)   

【答案】(1);(2)見解析.

【解析】分析:)利用勾股定理計(jì)算即可;

)連接ACBD.易知ACBD,可得ECED=ACBD=310,取格點(diǎn)GH,連接GHDEF,因?yàn)?/span>DGCH所以FDFC=DGCH=58,可得DF=EF.取格點(diǎn)IJ,連接IJBDK,因?yàn)?/span>BIDJ,所以BKDK=BIDJ=56,連接EKBFP,可證BPPF=53

詳解:(AB的長==;

)由題意連接ACBD.易知ACBD,

可得ECED=ACBD=310

取格點(diǎn)G、H連接GHDEF

DGCH,FDFC=DGCH=58可得DF=EF

取格點(diǎn)I、J連接IJBDK

BIDJ,BKDK=BIDJ=56

連接EKBFP可證BPPF=53

故答案為:;

由題意連接AC、BD

易知ACBD,可得ECED=ACBD=310,

取格點(diǎn)GH,連接GHDEF

因?yàn)?/span>DGCH,所以FDFC=DGCH=58可得DF=EF

取格點(diǎn)I、J,連接IJBDK

因?yàn)?/span>BIDJ,所以BKDK=BIDJ=56

連接EKBFP,可證BPPF=53

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】釣魚島自古就是中國的!2017年5月18日,中國海警2305,2308,2166,33115艦船隊(duì)在中國的釣魚島領(lǐng)海內(nèi)巡航,如圖,我軍以30km/h的速度在釣魚島A附近進(jìn)行合法巡邏,當(dāng)巡邏艦行駛到B處時(shí),戰(zhàn)士發(fā)現(xiàn)A在他的東北方向,巡邏艦繼續(xù)向北航行40分鐘后到達(dá)點(diǎn)C,發(fā)現(xiàn)A在他的東偏北15°方向,求此時(shí)巡邏艦與釣魚島的距離(≈1.414,結(jié)果精確到0.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx1xy軸交于點(diǎn)A,B,直線y=-2x4x,y軸交于點(diǎn)D,C,這兩條直線交于點(diǎn)E.

1)求E點(diǎn)坐標(biāo);

2)若P為直線CD上一點(diǎn),當(dāng)△ADP的面積為9時(shí),求P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七年級開展演講比賽,學(xué)校決定購買一些筆記本和鋼筆作為獎(jiǎng)品.現(xiàn)有甲、乙兩家商店出售兩種同樣的筆記本和鋼筆.他們的定價(jià)相同:筆記本定價(jià)為每本25元,鋼筆每支定價(jià)6元,但是他們的優(yōu)惠方案不同,甲店每買一本筆記本贈一支鋼筆;乙店全部按定價(jià)的9折優(yōu)惠.已知七年級需筆記本20本,鋼筆x支(大于20支).問:

1)在甲店購買需付款  元,在乙店購買需付款  元;

2)若x=30,通過計(jì)算說明此時(shí)到哪家商店購買較為合算?

3)當(dāng)x=40時(shí),請?jiān)O(shè)計(jì)一種方案,使購買最省錢?算出此時(shí)需要付款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班開展勤儉節(jié)約的活動,對每個(gè)同學(xué)的一天的消費(fèi)情況進(jìn)行調(diào)查,得到統(tǒng)計(jì)圖如圖所示:

1)求該班的總?cè)藬?shù);

2)將條形圖補(bǔ)充完整,并寫出消費(fèi)金額的中位數(shù);

3)該班這一天平均每人消費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩座建筑物的水平距離BC40m,從D點(diǎn)測得A點(diǎn)的仰角為30°,B點(diǎn)的俯角為10°,求建筑物AB的高度(結(jié)果保留小數(shù)點(diǎn)后一位).

參考數(shù)據(jù)sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,1.732.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),拋物線的頂點(diǎn)為C,直線y=x+3x軸交于點(diǎn)D.

(Ⅰ)求拋物線的頂點(diǎn)C的坐標(biāo)及A,B兩點(diǎn)的坐標(biāo);

(Ⅱ)將拋物線y=x2﹣6x+9向上平移1個(gè)單位長度,再向左平移t(t>0)個(gè)單位長度得到新拋物線,若新拋物線的頂點(diǎn)EDAC內(nèi),求t的取值范圍;

(Ⅲ)點(diǎn)P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點(diǎn),當(dāng)PAB的面積是ABC面積的2倍時(shí),求m,n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形 OA BC 中,已知點(diǎn) B(8,4),C(5,0),

點(diǎn) D 為 OB、AC 交點(diǎn),點(diǎn) P 從原點(diǎn)出發(fā)向 x 軸正方向運(yùn)動;

(1) 在點(diǎn) P 運(yùn)動過程中,若∠OBP=900,求出點(diǎn) P 坐標(biāo);

(2) 在點(diǎn) P 運(yùn)動過程中,若∠PDC+∠BCP=900,求出點(diǎn) P 坐標(biāo);

(3) 點(diǎn) P 在(2)的位置時(shí)停止運(yùn)動,點(diǎn) M 從點(diǎn) P 出發(fā)沿 x 軸正方向運(yùn)動,連結(jié) BM,若點(diǎn) P 關(guān)于BM 的對稱點(diǎn) P到 AB 所在直線的距離為 2,求此時(shí)點(diǎn) M 的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A∠O的一邊OA上.按要求畫圖并填空:

1)過點(diǎn)A畫直線AB ⊥OA,與∠O的另一邊相交于點(diǎn)B;

2)過點(diǎn)AOB的垂線段AC,垂足為點(diǎn)C

3)過點(diǎn)C畫直線CD∥OA ,交直線AB于點(diǎn)D;

4∠CDB= °;

5)如果OA=8,AB=6,OB=10,則點(diǎn)A到直線OB的距離為

查看答案和解析>>

同步練習(xí)冊答案