【題目】如圖,在ABC中,∠B=40°,C=80°,ADBC邊上的高,AE平分∠BAC.

(1)求∠BAE的度數(shù);(2)求∠DAE的度數(shù).

【答案】(1) BAE=30 °;(2) EAD=20°.

【解析】

(1)由三角形內(nèi)角和為180°結(jié)合已知條件易得∠BAC=60°,再結(jié)合AE平分∠BAC即可得到∠BAE=30°;

(2)由AD是△ABC的高可得∠ADB=90°,結(jié)合∠ABC=40°可得∠BAD=50°,再結(jié)合∠BAE=30°即可解得∠DAE=20°.

(1)∵在△ABC中,∠ABC=40°,∠ACB=80°,

∴∠BAC=180°-40°-80°=60°,

∵AE平分∠BAC,

∴∠BAE=30°;

(2)∵AD是△ABC的高,

∴∠ADB=90°,

∴∠BAD=180°-90°-40°=50°,

∴∠DAE=∠BAD-∠BAE=50°-30°=20°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:﹣24 +|1﹣2 |+( 1+(π﹣ 0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(0,1)和(1,﹣2).

(1)求函數(shù)的解析式;

(2)求直線y=kx+b上到x軸距離為7的點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ADABC的角平分線,CEABC的高,AD、CE相交于點PBAC=66°,BCE=40°,求∠ADC和∠APC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在ABC中,AE平分∠BAC,CB,FAE上一點,且FDBCD點.

(1)試猜想∠EFD,B,C的關(guān)系,并說明理由;

(2)如圖②,當點FAE的延長線上時,其余條件不變,(1)中的結(jié)論還成立嗎?說明理由.

        

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,AD⊥BC,垂足為點D,DE∥AC交AB于E,DF∥AB交AC于F,當△ABC再添加一個條件:時,四邊形AEDF為菱形(填寫一個條件即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果兩個一次函數(shù)y=k1x+b1和y=k2x+b2滿足k1=k2 , b1≠b2 , 那么稱這兩個一次函數(shù)為“平行一次函數(shù)”. 如圖,已知函數(shù)y=﹣2x+4的圖象與x軸、y軸分別交于A、B兩點,一次函數(shù)y=kx+b與y=﹣2x+4是“平行一次函數(shù)”

(1)若函數(shù)y=kx+b的圖象過點(3,1),求b的值;
(2)若函數(shù)y=kx+b的圖象與兩坐標軸圍成的三角形和△AOB構(gòu)成位似圖形,位似中心為原點,位似比為1:2,求函數(shù)y=kx+b的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點E為AD的中點,請只用無刻度的直尺作圖

(1)如圖1,在BC上找點F,使點F是BC的中點;
(2)如圖2,在AC上取兩點P,Q,使P,Q是AC的三等分點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上,頂點B的坐標為 ,點C的坐標為(1,0),點P為斜邊OB上的一動點,則PA+PC的最小值為( )

A.
B.
C.2
D.

查看答案和解析>>

同步練習冊答案