【題目】如圖,是小朋友蕩秋千的側(cè)面示意圖,靜止時(shí)秋千位于鉛垂線上,轉(zhuǎn)軸到地面的距離 ,小亮在蕩秋千過程中,當(dāng)秋千擺動(dòng)到最高點(diǎn)時(shí),測(cè)得點(diǎn)到的距離,點(diǎn)到地面的距離:當(dāng)他從處擺動(dòng)到處時(shí),有.
(1)求到的距離;
(2)求到地面的距離.
【答案】(1)A'到BD的距離是1.6m(2)A'到地面的距離是1m.
【解析】
(1)作A'F⊥BD,垂足為F,根據(jù)全等三角形的判定和性質(zhì)解答即可;
(2)根據(jù)全等三角形的性質(zhì)解答即可.
(1)如圖2,作A'F⊥BD,垂足為F.
∵AC⊥BD,
∴∠ACB=∠A'FB=90;
在Rt△A'FB中,∠1+∠3=90;
又∵A'B⊥AB,∴∠1+∠2=90,
∴∠2=∠3;
在△ACB和△BFA'中,
∴△ACB≌△BFA'(AAS);
∴A'F=BC
∵AC∥DE且CD⊥AC,AE⊥DE,
∴CD=AE=2.4;
∴BC=BDCD=42.4=1.6,
∴A'F=1.6,即A'到BD的距離是1.6m.
(2)由(1)知:△ACB≌△BFA'
∴BF=AC=3m,
作A'H⊥DE,垂足為H.
∵A'F∥DE,
∴A'H=FD,
∴A'H=BDBF=43=1,即A'到地面的距離是1m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的面積為8cm2 , AP垂直∠B的平分線BP于P,則△PBC的面積為( )
A. 2cm2 B. 3cm2 C. 4cm2 D. 5cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,).
(1)_____,點(diǎn)A的坐標(biāo)為______,點(diǎn)B的坐標(biāo)為_____;
(2)設(shè)拋物線的頂點(diǎn)為M,求四邊形ABMC的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)y=﹣2x2+4x+m的圖象與x軸的一個(gè)交點(diǎn)為A(3,0),另一個(gè)交點(diǎn)為B,且與y軸交于點(diǎn)C.
(1)求m的值及點(diǎn)B的坐標(biāo);
(2)求△ABC的面積;
(3)該二次函數(shù)圖象上有一點(diǎn)D(x,y),使S△ABD=S△ABC,請(qǐng)求出D點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,△OA1B1是邊長(zhǎng)為2的等邊三角形,作△B2A2B1與△OA1B1關(guān)于點(diǎn)B1成中心對(duì)稱,再作△B2A3B3與△B2A2B1關(guān)于點(diǎn)B2成中心對(duì)稱,如此作下去,則△B2nA2n+1B2n+1(n是正整數(shù))的頂點(diǎn)A2n+1的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①c<0;②2a+b=0;③a+b+c<0;④b2-4ac<0,其中正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8cm,BC=12cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/秒的速度沿BC向終點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t=3時(shí),求證:△ABP≌△DCP.
(2)當(dāng)點(diǎn)P從點(diǎn)B開始運(yùn)動(dòng)的同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以v cm/秒的速度沿CD向終點(diǎn)D運(yùn)動(dòng),是否存在這樣v的值,使得△ABP與△PQC全等?若存在,請(qǐng)求出v的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 內(nèi)接于半⊙O,AB 為直徑,弦 AD 平分∠CAB,DE 切⊙O 于點(diǎn) D.
(1) 求證:DE∥BC
(2) 若 AD=BC,⊙O 半徑為 2,求∠CAD 與弧CD圍成區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C在同一直線上,△ABD和△BCE都是等邊三角形,AE,CD分別與BD,BE交于點(diǎn)F,G,連接FG,有如下結(jié)論:①AE=CD ②∠BFG= 60°;③EF=CG;④AD⊥CD⑤FG ∥AC 其中,正確的結(jié)論有__________________. (填序號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com