【題目】如圖,廣場上一個立體雕塑由兩部分組成,底座是一個正方體,正上方是一個球體,且正方體的高度和球的高度相等.當陽光與地面的夾角成60°時,整個雕塑在地面上的影子AB長2米,求這個雕塑的高度.(結果精確到百分位,參考數據:≈1.73)
【答案】雕塑的高度為4.24米.
【解析】
先過D作DF⊥AB于F,過O作OG⊥AB于G,過O作DF的垂線,交DF于H,交⊙O于E,則AE為⊙O的切線,延長AE交BD于C,設⊙O的半徑為r,則OG= 3r=HF=AE,OD=r,根據∠ACB=30°,∠DOE=30°,得到Rt△ODH中,DH=OD=r,DF=r+3r,進而得出CE=CD=AC-AE=2-3r,再根據AC∥DF,得出,進而求得r≈1.06,據此可得這個雕塑的高度.
如圖所示,設D為光線與⊙O的切點,過D作DF⊥AB于F,過O作OG⊥AB于G,
過O作DF的垂線,交DF于H,交⊙O于E,
則AE為⊙O的切線,延長AE交BD于C,
設⊙O的半徑為r,則OG=3r=HF=AE,OD=r,
∵∠ABD=60°,
∴∠ACB=30°,∠DOE=30°,
∴Rt△ODH中,DH=OD=r,
∴DF=r+3r,
又∵Rt△ABC中,AB=2,
∴AC=2,BC=4,
∴CE=CD=AC﹣AE=2﹣3r,
∵AC∥DF,
∴,即,
解得r≈1.06,
∴雕塑的高度為4r=4×1.06=4.24米.
科目:初中數學 來源: 題型:
【題目】為弘揚中華傳統(tǒng)文化,某校舉辦了學生“國學經典大賽”.比賽項目為:.唐詩;.宋詞;.論語;.三字經.比賽形式分“單人組”和“雙人組”.
(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率是多少?
(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則小紅和小明都沒有抽到“論語”的概率是多少?請用畫樹狀圖或列表的方法進行說明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中有一直角三角形AOB,O為坐標原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉90°,得到△DOC,拋物線y=ax2+bx+c經過點A、B、C.
(1)求拋物線的解析式;
(2)若點P是第二象限內拋物線上的動點,其橫坐標為t,設拋物線對稱軸l與x軸交于一點E,連接PE,交CD于F,求以C、E、F為頂點三角形與△COD相似時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖顯示了用計算機模擬隨機投擲一枚圖釘的某次實驗的結果.
下面有三個推斷:
①當投擲次數是500時,計算機記錄“釘尖向上”的次數是308,所以“釘尖向上”的概率是0.616;
②隨著實驗次數的增加,“釘尖向上”的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計“釘尖向上”的概率是0.618;
③若再次用計算機模擬實驗,則當投擲次數為1000時,“釘尖向上”的概率一定是0.620.
其中合理的是( )
A. ① B. ② C. ①② D. ①③
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料,然后回答問題.
①在進行二次根式的化簡與運算時,我們有時會碰上如一樣的式子,其實我們還可以將其進一步化簡: 以上這種化簡的步驟叫做分母有理化.
②學習數學,最重要的是學習數學思想,其中一種數學思想叫做換元的思想,它可以簡化我們的計算,比如我們熟悉的下面這個題:已知 ab2,ab 3 ,求 a2 b2 .我們可以把ab和ab看成是一個整體,令 xab , y ab ,則 a 2 b2 (a b)2 2ab x2 2y 4 610.這樣,我們不用求出a,b,就可以得到最后的結果.
(1)計算:
(2)已知 m 是正整數, a ,b 且 2a2 1823ab 2b2 2019 .求 m.
(3)已知,則的值為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點E是正方形ABCD的邊DC上一點,把△ADE順時針旋轉△ABF的位置.
(1)旋轉中心是點 ,旋轉角度是 度;
(2)若連結EF,則△AEF是 三角形;并證明
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等腰直角三角形 ABC 中,BAC 90° ,AB AC 6 ,D,E 是線段 BC 上的動點,且 DAE 45°
(1)如圖 1,請直接寫出 BD,DE,EC 滿足的關系式為 ,
(2)①如圖 1, CE 3 ,請求出 ADE 的面積(寫出過程);
②如圖 2, EAC 30° ,請求出 CE 的長度(寫出過程);
(3) 如圖 3,D,E 運動到了線段的延長線上,且滿足 DAE 135°,CE=8,直接寫出 BD的長為
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小王和小張利用如圖所示的轉盤做游戲,轉盤的盤面被分為面積相等的4個扇形區(qū)域,且分別標有數字1,2,3,4.游戲規(guī)則如下:兩人各轉動轉盤一次,分別記錄指針停止時所對應的數字,如兩次的數字都是奇數,則小王勝;如兩次的數字都是偶數,則小張勝;如兩次的數字是奇偶,則為平局.解答下列問題:
(1)小王轉動轉盤,當轉盤指針停止,對應盤面數字為奇數的概率是多少?
(2)該游戲是否公平?請用列表或畫樹狀圖的方法說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】晨光中學課外活動小組準備圍建一個矩形生物苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊的長為x米.
(1)若平行于墻的一邊長為y米,直接寫出y與x的函數關系式及其自變量x的取值范圍;
(2)設這個苗圃園的面積為S,求S與x之間的函數關系.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com