精英家教網 > 初中數學 > 題目詳情
函數y=x2+bx+c與y=x的圖象如圖所示,有以下結論:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④當1<x<3時,x2+(b﹣1)x+c<0.其中正確的個數為(  。
A.1B.2C.3D.4
B.

試題分析:拋物線y=x2+bx+c與x軸沒有交點,所以判別式△=b2-4ac=b2-4c<0,所以結論①錯誤;因為點(1,1)在拋物線上,所以將x=1,y=1代入拋物線解析式得:b+c+1=1,所以結論②錯誤;由于點(3,3)在拋物線上,所以將x=3,y=3代入拋物線解析式得:9+3b+c=3,化簡得:3b+c+6=0,所以結論③正確;當1<x<3時,直線在拋物線上方,所以有:x>x2+bx+c,化簡得:x2+(b-1)x+c<0,所以結論④正確.故選B.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:單選題

將拋物線y=3x2的圖象先向上平移3個單位,再向右平移4個單位所得的解析式為(     )
A.B.
C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

永嘉縣綠色和特色農產品在國際市場上頗具競爭力,其中香菇遠銷日本和韓國等地.上市時,外商李經理按市場價格10元/千克在我縣收購了2000千克香菇存放入冷庫中.據預測,香菇的市場價格每天每千克將上漲0.5元,但冷庫存放這批香菇時每天需要支出各種費用合計340元,而且香菇在冷庫中最多保存110天,同時,平均每天有6千克的香菇損壞不能出售.
(1)若存放天后,將這批香菇一次性出售,設這批香菇的銷售總金額為元,試寫出之間的函數關系式.
(2)李經理想獲得利潤22500元,需將這批香菇存放多少天后出售?(利潤=銷售總金額-收購成本-各種費用)
(3)李經理將這批香菇存放多少天后出售可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

將拋物線向下平移2個單位再向右平移3個單位,所得拋物線的表達式是            

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在矩形OABC中,點A(0,10),C(8,0).沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.分別以OC, OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線經過O,D,C三點.

(1)求D的的坐標及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設運動時間為t秒,當t為何值時,以P、Q、C為頂點的三角形與△ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知點A (2,4) 和點B (1,0)都在拋物線上.

(1)求m、n;
(2)向右平移上述拋物線,記平移后點A的對應點為A′,點B的對應點為B′,若四邊形A A′B′B為菱形,求平移后拋物線的表達式;
(3)記平移后拋物線的對稱軸與直線AB′ 的交點為C,試在x軸上找一個點D,使得以點B′、C、D為頂點的三角形與△ABC相似.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知(-3,m)、(1,m)是拋物線y=2x2+bx+3的兩點,則b=____.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

給出下列四個命題:(1)將一個n(n≥4)邊形的紙片剪去一個角,則剩下的紙片是n+1或n-1邊形;(2)若,則x=1或x=3;(3)若函數是關于x的反比例函數,則;(4)已知二次函數,且a>0,a-b+c<0,則。其中,正確的命題有( )個.
A.0B.1C.2D.4

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

已知拋物線>0)的對稱軸為直線,且經過點(-3,),(4,),試比較的大。    (填“>”,“<”或“=”).

查看答案和解析>>

同步練習冊答案