【題目】探究題.

如圖,、分別為數(shù)軸上的兩點(diǎn),點(diǎn)對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為

)請(qǐng)寫出與兩點(diǎn)距離相等的點(diǎn)所對(duì)應(yīng)的數(shù).

)現(xiàn)有一只電子螞蟻點(diǎn)出發(fā),以單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻恰好從點(diǎn)出發(fā),以單位/秒的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的點(diǎn)相遇,你知道點(diǎn)對(duì)應(yīng)的數(shù)是多少嗎?

)若當(dāng)電子螞蟻點(diǎn)出發(fā)時(shí),以單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻恰好從點(diǎn)出發(fā),以單位/秒的速度也向左運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的點(diǎn)相遇,你知道點(diǎn)對(duì)應(yīng)的數(shù)是多少嗎?

【答案】140;(228;(3-260

【解析】

(1)-20100和的一半即是M;
(2)此題是相遇問題,先求出相遇所需的時(shí)間,再求出點(diǎn)Q走的路程,根據(jù)“左減右加”的原則,可求出-20向右運(yùn)動(dòng)到相遇地點(diǎn)所對(duì)應(yīng)的數(shù);
(3)此題是追及問題,可先求出P追上Q所需的時(shí)間,然后可求出Q所走的路程,根據(jù)“左減右加”的原則,可求出點(diǎn)D所對(duì)應(yīng)的數(shù)。

因?yàn)?/span>A、B分別是數(shù)軸上的兩點(diǎn),點(diǎn)對(duì)應(yīng)的數(shù)為,點(diǎn)對(duì)應(yīng)的數(shù)為

AB中點(diǎn)M對(duì)應(yīng)的數(shù)是100-60=40

M點(diǎn)對(duì)應(yīng)的數(shù)是40;

(2)由題意知PQ的相遇時(shí)間是
所以相同時(shí)間Q點(diǎn)運(yùn)動(dòng)的路程為
即從數(shù)-20向右運(yùn)動(dòng)48個(gè)單位到數(shù)28;
(3) P點(diǎn)追到Q點(diǎn)的時(shí)間為
所以此時(shí)Q點(diǎn)起過路程為
即從數(shù)-20向左運(yùn)動(dòng)240個(gè)單位到數(shù)-260.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一批圓心角為90o半徑為3的扇形下腳料,現(xiàn)利用這批材料截取盡可能大的正方形材料,如圖有兩種截取方法

方法一如圖1所示正方形OPQR的頂點(diǎn)P、Q、R均在扇形的邊界上;

方法二如圖2所示正方形頂點(diǎn)C、D、EF均在扇形邊界上

試分別求這兩種截取方法得到的正方形面積,并說明哪種截取方法得到的正方形面積更大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn),之間有一條曲線和一條線段,在線段上,己知,是線段上一動(dòng)點(diǎn),過點(diǎn)交曲線于點(diǎn),連接,過點(diǎn)于點(diǎn).設(shè),兩點(diǎn)間的距離為,兩點(diǎn)間的距離為.(當(dāng)點(diǎn)與點(diǎn)重合時(shí),的值為)小思根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.

下面是小思的探究過程,請(qǐng)補(bǔ)充完整:

)通過取點(diǎn),畫圖,測(cè)量,得到了的幾組值,補(bǔ)全下表:

(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))

)在下列平面直角坐標(biāo)系中描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象.

)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)時(shí),的長(zhǎng)度約為__________(結(jié)果保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E是邊AB上一點(diǎn),點(diǎn)P是對(duì)角線BD上一點(diǎn),且PEPC

求證:PCPE;

BE2,求PB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18 ℃的條件下生長(zhǎng)最快的新品種.如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線y=的一部分.請(qǐng)根據(jù)圖中信息解答下列問題:

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18 ℃的時(shí)間有多少小時(shí)?

(2)求k的值;

(3)當(dāng)x=16時(shí),大棚內(nèi)的溫度約為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1ykx過點(diǎn)(12),與直線l2y=﹣3x+b相交于點(diǎn)A,若l2x軸交于點(diǎn)B2,0),與y軸交于點(diǎn)C

1)分別求出直線11l2的解析式;

2)求OAC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著越來越多年輕家長(zhǎng)對(duì)低幼階段孩子英語(yǔ)口語(yǔ)的重視,某APP順勢(shì)推出了北美外教在線授課系列課程,提供A課程、B課程兩種不同課程供家長(zhǎng)選擇.已知購(gòu)買A課程”3課時(shí)與B課程”5課時(shí)共需付款410元,購(gòu)買A課程”5課時(shí)與B課程”3課時(shí)共需付款470元.

1)請(qǐng)問購(gòu)買A課程”1課時(shí)多少元?購(gòu)買B課程”1課時(shí)多少元?

2)根據(jù)市場(chǎng)調(diào)研,APP銷售A課程”1課時(shí)獲利25元,銷售B課程”1課時(shí)獲利20元,臨近春節(jié),小融計(jì)劃用不低于3000元且不超過3600元的壓歲錢購(gòu)買兩種課程共60課時(shí),請(qǐng)問購(gòu)買A課程多少課時(shí)才使得APP的獲利最高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)A、D為圓心,以大于的長(zhǎng)為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)MN;第二步,連結(jié)MN,分別交AB、AC于點(diǎn)E、F;第三步,連結(jié)DE、DF..若BD=6AF=4,CD=3,則BE的長(zhǎng)是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了開設(shè)武術(shù)、舞蹈、剪紙等三項(xiàng)活動(dòng)課程以提升學(xué)生的體藝素養(yǎng),隨機(jī)抽取了部分學(xué)生對(duì)這三項(xiàng)活動(dòng)的興趣情況進(jìn)行了調(diào)查(每人從中只能選一項(xiàng)),并將調(diào)查結(jié)果繪制成如圖兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答問題.

1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)本次抽樣調(diào)查的樣本容量是 ;

3)已知該校有1200名學(xué)生,請(qǐng)你根據(jù)樣本估計(jì)全校學(xué)生中喜歡剪紙的人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案