【題目】如圖,△ABC的頂點的坐標(biāo)分別為A(2,2)B(1,0),C(31)

(1)畫出△ABC關(guān)于x軸對稱的;

(2)畫出△ABC繞原點O逆時針旋轉(zhuǎn)90°的△A2B1C2,寫出點C2的坐標(biāo);

(3)(1)(2)的基礎(chǔ)上,圖中的,關(guān)于哪個點中心對稱.

【答案】解:(1)作圖見解析;(2)作圖見解析,;(3

【解析】

1)利用關(guān)于x軸的坐標(biāo)特征寫出A1、C 1的坐標(biāo),然后描點即可;

2)利用網(wǎng)格特點和旋轉(zhuǎn)的性質(zhì),寫出點A、B、C的對應(yīng)點A2、B1、C2,從而得到△A2B1C2,然后寫出點C2的坐標(biāo);

3)寫出的中點坐標(biāo)即可.

解:

(1)如圖,為所作;

(2)如圖,為所作,點C2的坐標(biāo)為(1,3);

(3)∵

的中點是

∴圖中的,關(guān)于點中心對稱

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB4cmAD8cm,按如圖方式折疊,使點D與點B重合,折痕為EF,則tanBEF=(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針旋轉(zhuǎn)60°到△的位置,連接,則的長為(

A.2B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知△ABC三個頂點分別為A(﹣1,2)、B21)、C4,5).

1)以原點O為位似中心,在x軸的上方畫出△A1B1C1,使△A1B1C1與△ABC位似,且相似比為2;

2)△A1B1C1的面積是   平方單位.

3)點Pa,b)為△ABC內(nèi)一點,則在△A1B1C1內(nèi)的對應(yīng)點P的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐:

概念理解:將△ABC 繞點 A 按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角記為 θ0°≤θ90°),并使各邊長變?yōu)樵瓉淼?/span> n 倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],

問題解決:(2)如圖,在△ABC 中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θn]得到△AB′C′,使點 B,C,C′在同一直線上,且四邊形 ABBC′為矩形,求 θ n 的值.

拓廣探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,對△ABC作變換 得到△AB′C′,則四邊形 ABB′C′為正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,丁軒同學(xué)在晚上由路燈AC走向路燈BD,當(dāng)他走到點P時,發(fā)現(xiàn)身后他影子的頂部剛好接觸到路燈AC的底部,當(dāng)他向前再步行20m到達Q點時,發(fā)現(xiàn)身前他影子的頂部剛好接觸到路燈BD的底部,已知丁軒同學(xué)的身高是1.5m,兩個路燈的高度都是9m,則兩路燈之間的距離是_____m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON90°,A是∠MON內(nèi)部的一點,過點AABON,垂足為點B,AB3厘米,OB4厘米,動點E,F同時從O點出發(fā),點E1.5厘米/秒的速度沿ON方向運動,點F2厘米/秒的速度沿OM方向運動,EFOA交于點C,連接AE,當(dāng)點E到達點B時,點F隨之停止運動.設(shè)運動時間為t秒(t0).

1)當(dāng)t1秒時,EOFABO是否相似?請說明理由;

2)在運動過程中,不論t取何值時,總有EFOA.為什么?

3)連接AF,在運動過程中,是否存在某一時刻t,使得SAEFS四邊形AEOF?若存在,請求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在中,,點分別是邊的中點,連接

1)如圖①,求的值;

2)將繞點順時針旋轉(zhuǎn)到如圖(2)的位置時,的大小是否發(fā)生變化,若不變化,請說明理由;若發(fā)生變化,請求出它的值;

3)將繞點順時針旋轉(zhuǎn)到直線的下方,且在同一直線上時,如圖(3),求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一場籃球比賽中,一名球員在關(guān)鍵時刻投出一球,已知球出手時離地面高2米,與籃圈中心的水平距離為7米,當(dāng)球出手后水平距離為4米時到達最大高度4米,已知籃球運行的軌跡為拋物線,籃圈中心距離地面3.19米.

1)以地面為x軸,籃球出手時垂直地面所在直線為y軸建立平面直角坐標(biāo)系,求籃球運行的拋物線軌跡的解析式;

2)通過計算,判斷這個球員能否投中?

查看答案和解析>>

同步練習(xí)冊答案