【題目】(1) (2)
(3)(x-1)(x+3)=12 (4)
【答案】(1)x1=,x2=1;(2)x1=,x2=;(3)x1=-5,x2=3;(4)無(wú)解.
【解析】
(1)先移項(xiàng),再求出b2-4ac的值,最后代入公式求出即可;
(2)先移項(xiàng),運(yùn)用因式分解法求解即可;
(3)整理后運(yùn)用因式分解法求出即可;
(4)先移項(xiàng),再求出b2-4ac的值,最后代入公式求出即可.
(1)
2x2-5x+3=0,
∵a=2,b=-5,c=3,
∴b2-4ac=25-24=1>0,
∴x=,
即:x1=,x2=1;
(2)
4(x+3)2-25(x-2)2=0,
[2(x+3)+5(x-2)][ 2(x+3)-5(x-2)]=0,
∴(7x-4)(-3x+16)=0
∴7x-4=0,-3x+16=0
解得:x1=,x2=;
(3)(x-1)(x+3)=12
x2+2x-15=0,
∴(x+5)(x-3)=0
∴x+5=0,x-3=0,
解得:x1=-5,x2=3;
(4)
5x2-7x+5=0,
∵a=5,b=-7,c=5,
∴b2-4ac=72-4×5×5=49-100=-51<0,
∴原方程無(wú)解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購(gòu)進(jìn)一批干果分裝成營(yíng)養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費(fèi)用80元.
(1)請(qǐng)直接寫出y與x之間的函數(shù)關(guān)系式;
(2)如果每天獲得160元的利潤(rùn),銷售單價(jià)為多少元?
(3)設(shè)每天的利潤(rùn)為w元,當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,各地采用價(jià)格調(diào)控手段達(dá)到節(jié)約用水的目的,某市規(guī)定如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水量不超過(guò)6立方米時(shí),水費(fèi)按每立方米a元收費(fèi),超過(guò)6立方米時(shí),不超過(guò)的部分每立方米仍按a元收費(fèi),超過(guò)的部分每立方米按c元收費(fèi),該市某戶今年9、10月份的用水量和所交水費(fèi)如下表所示:
設(shè)某戶每月用水量x(立方米),應(yīng)交水費(fèi)y(元)
(1)a= ,c=
(2)當(dāng)x≤6,x≥6時(shí),分別求出y于x的函數(shù)關(guān)系式
(3)若該戶11月份用水量為8立方米,求該戶11 月份水費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】武勝縣白坪—飛龍鄉(xiāng)村旅游度假村橙海陽(yáng)光景點(diǎn)組織輛汽車裝運(yùn)完三種臍橙共噸到外地銷售.按計(jì)劃,輛汽車都要裝運(yùn),每輛汽車只能裝運(yùn)同一種臍橙,且必須裝滿.根據(jù)下表提供的信息,解答以下問(wèn)題:
臍橙品種 | |||
每輛汽車運(yùn)載量(噸) | |||
每噸臍橙獲得(元) |
設(shè)裝運(yùn)種臍橙的車輛數(shù)為,裝運(yùn)種臍橙的車輛數(shù)為,求與之間的函數(shù)關(guān)系式;
如果裝運(yùn)每種臍橙的車輛數(shù)都不少于輛,那么車輛的安排方案有幾種?
設(shè)銷售利潤(rùn)為(元),求與之間的函數(shù)關(guān)系式;若要使此次銷售獲利最大,應(yīng)采用哪種安排方案?并求出最大利潤(rùn)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列定理中,逆命題是假命題的是( )
A.等腰三角形的底角相等;
B.全等三角形的對(duì)應(yīng)角相等;
C.直角三角形斜邊上的中線等于斜邊的一半;
D.線段垂直平分線上的任意一點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將直線y=x向下平移b個(gè)單位長(zhǎng)度后得到直線l,l與反比例函數(shù)y=(k>0,x>0)的圖象相交于點(diǎn)A,與x軸相交于點(diǎn)B,則OA2﹣OB2=10,則k的值是( 。
A. 5 B. 10 C. 15 D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖 1,△ABC 和△ADE 都是等腰直角三角形,∠BAC 和∠DAE 是直角,連接BD,CE 相交于點(diǎn) F,則∠BFC= °
(2)如圖 2,△ABC 和△ADE 都是等邊三角形,連接 BD,CE 相交于點(diǎn) F,則∠BFC= °
(3)如圖 3,△ABC 和△ADE 都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,連接 BD,CE相交于點(diǎn) F,請(qǐng)猜想∠BFC 與∠BAC 有怎樣的大小關(guān)系?請(qǐng)證明你的猜想
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=13,BC=10,D是AB的中點(diǎn),過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E,則DE的長(zhǎng)是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com