【題目】已知:如圖,O是矩形ABCD對(duì)角線的交點(diǎn),AE平分∠BAD,∠AOD=120°,求∠AEO的度數(shù).

【答案】30°

【解析】

根據(jù)矩形的性質(zhì)可得OB=OCAD∥BC,∠ABC=BAD=90°,又由AE平分∠BAD∠AOD=120°,即可求得∠OBC∠AEB的度數(shù),以及AB=BE ,AB=OA=OB,即可得OB=BE,∠BOE=BEO,即可求得∠OEB的度數(shù)

解:∵四邊形ABCD是矩形,

ADBC,∠ABC=BAD=90°,

AC=BD,OB=0.5BD,OC=0.5AC,

OB=OC,

∴∠OBC=OCB,

∵∠BOC=AOD=120°

∴∠OBC=30°,

AE平分∠BAD,

∴∠BAE=EAD=45°

∴∠AEB=EAD=BAE=45°,

AB=BE

∵∠AOD=120°,

∴∠AOB=60°,

AB=OA=OB,

OB=BE

∴∠BOE=BEO,

∴∠OEB=75°,

∴∠AEO=OEB-AEB=75°-45°=30°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1動(dòng)手操作:

如圖,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)處,折痕為EF,若ABE=20°,那么的度數(shù)為 。

2)觀察發(fā)現(xiàn):

小明將三角形紙片ABCABAC)沿過點(diǎn)A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到AEF(如圖).小明認(rèn)為AEF是等腰三角形,你同意嗎?請(qǐng)說明理由.

3)實(shí)踐與運(yùn)用:

將矩形紙片ABCD 按如下步驟操作:將紙片對(duì)折得折痕EF,折痕與AD邊交于點(diǎn)E,與BC邊交于點(diǎn)F;將矩形ABFE與矩形EFCD分別沿折痕MNPQ折疊,使點(diǎn)A、點(diǎn)D都與點(diǎn)F重合,展開紙片,此時(shí)恰好有MP=MN=PQ(如圖,MNF的大小。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6B是數(shù)軸上在A左側(cè)的一點(diǎn),且A,B兩點(diǎn)間的距離為10.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為tt0)秒.

1)數(shù)軸上點(diǎn)B表示的數(shù)是   ,點(diǎn)P表示的數(shù)是   (用含t的代數(shù)式表示);

2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒4個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā).求:

①當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P與點(diǎn)Q相遇?

②當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P與點(diǎn)Q間的距離為8個(gè)單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC,G為三角形外一點(diǎn),且△GBC為等邊三角形.

(1)求證:直線AG垂直平分BC;

(2)以AB為一邊作等邊△ABE(如圖2),連接EG、EC,試判斷△EGC是否構(gòu)成直角三角形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016江蘇省無錫市)某公司今年如果用原線下銷售方式銷售一產(chǎn)品,每月的銷售額可達(dá)100萬元.由于該產(chǎn)品供不應(yīng)求,公司計(jì)劃于3月份開始全部改為線上銷售,這樣,預(yù)計(jì)今年每月的銷售額y(萬元)與月份x(月)之間的函數(shù)關(guān)系的圖象如圖1中的點(diǎn)狀圖所示(5月及以后每月的銷售額都相同),而經(jīng)銷成本p(萬元)與銷售額y(萬元)之間函數(shù)關(guān)系的圖象圖2中線段AB所示.

(1)求經(jīng)銷成本p(萬元)與銷售額y(萬元)之間的函數(shù)關(guān)系式;

(2)分別求該公司3月,4月的利潤;

(3)問:把3月作為第一個(gè)月開始往后算,最早到第幾個(gè)月止,該公司改用線上銷售后所獲得利潤總額比同期用線下方式銷售所能獲得的利潤總額至少多出200萬元?(利潤=銷售額﹣經(jīng)銷成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若規(guī)定這樣一種運(yùn)算:ab=(|ab|+a+b),例如:23=(|23|+2+3)=3

1)求34和(-3-2)的值;

2)將1,2,3,…,5050個(gè)自然數(shù),任意分為25,每組兩個(gè)數(shù),現(xiàn)將每組的兩個(gè)數(shù)中任一數(shù)值記作a,另一個(gè)記作b,代入代數(shù)式(|ab|+a+b)中進(jìn)行計(jì)算,求出其結(jié)果,25組數(shù)代入后可求得25個(gè)值,求這25個(gè)值的和的最大值是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD.

(1)如圖1,若∠DAC=2∠ABC,AC=BC,四邊形ABCD是平行四邊形,則∠ABC=   ;

(2)如圖2,若∠ABC=30°,△ACD是等邊三角形,AB=3,BC=4.求BD的長;

(3)如圖3,若∠ABC=30°,∠ACD=45°,AC=2,B、D之間距離是否有最大值?如有求出最大值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公園的門票價(jià)格規(guī)定如下表:

購票張數(shù)

1 50

51 100

101 150

150 張以上

每張票的價(jià)格

12

10

8

超過 150 張的部分 7

某校七年級(jí)(1)(2)兩個(gè)班共 104 人,其中(1)班 40 多人,不足 50 人,經(jīng)估算,如果兩個(gè)班都以班為單位購票,則一共應(yīng)付 1136 元,問:

(1)若兩班聯(lián)合起來作為一個(gè)團(tuán)體購票,可省多少錢?

(2)兩班學(xué)生各有多少人?

(3)若七年級(jí)(3)班有 n 人(46<n<55)與(1,2)班一起去游園,某商家贊助,支付三個(gè)班的所有門票費(fèi),則該商家最少花費(fèi) 元(用含 n 的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:若一個(gè)四邊形的兩條對(duì)角線相等,則稱這個(gè)四邊形為等對(duì)角線四邊形.請(qǐng)解答下列問題:

1)寫出你所學(xué)過的特殊四邊形中是等對(duì)角線四邊形的兩種圖形的名稱;

2)探究:當(dāng)?shù)葘?duì)角線四邊形中兩條對(duì)角線所夾銳角為60°時(shí),這對(duì)60°角所對(duì)的兩邊之和與其中一條對(duì)角線的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案