【題目】甲乙兩商店出售同樣的茶壺和茶杯,茶壺每只定價20元,茶杯每只定價5元,兩家商店搞促銷活動,甲店:買一只茶壺贈一只茶杯;乙店:按定價的9折優(yōu)惠,某顧客需購買茶壺4只,茶杯若干只(不少于4只).

1)設購買茶杯數(shù)為(只),在甲店購買的付款為(元),在乙店購買的付款數(shù)為(元),分別寫出在兩家商店購物的付款數(shù)與茶杯數(shù)之間的關系式;

2)當購買多少只茶杯時,兩家商店的花費相同?

3)當購買20只茶杯時,去哪家商店購物比較合算?

【答案】1=,=;(2)當購買24只茶杯時,兩家商店的花費相同;(3)應去甲商店購買比較合算

【解析】

1)根據(jù)兩家的優(yōu)惠方法分別列出關系式即可;

2)構建方程解方程即可得到答案;

3)當x=20時分別計算比較即可.

1=

=;

2)當=時,,

解得x=24

∴當購買24只茶杯時,兩家商店的花費相同;

3)當x=20時,=160=90+72=162,

<,

∴應去甲商店購買比較合算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】8分)某學校體育看臺的側面如圖中陰影部分所示,看臺有四級高度相等的小臺階,已知看臺高為1.6米,現(xiàn)要做一個不銹鋼的扶手AB及兩根與FG垂直且長度均為0.8米的不銹鋼架桿AD8C(桿子的底端分別為D、C),且∠DAB=66.5°cos66.5°≈0.4).

1)求點D與點C的高度差DH

2)求所用不銹鋼材料的總長度(即AD+AB+BC的長).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于函數(shù)y=﹣2x+1,下列結論正確的是(  )

A.y值隨x值的增大而增大

B.它的圖象與x軸交點坐標為(0,1

C.它的圖象必經(jīng)過點(﹣13

D.它的圖象經(jīng)過第一、二、三象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y2x+6x軸交于點A,與y軸交于點B,過點B的直線交x軸于點C,且ABBC

1)求直線BC的解析式;

2)點P為線段AB上一點,點Q為線段BC延長線上一點,且APCQ,設點Q橫坐標為m,求點P的坐標(用含m的式子表示,不要求寫出自變量m的取值范圍);

3)在(2)的條件下,點My軸負半軸上,且MPMQ,若∠BQM45°,求直線PQ的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖表示甲和乙沿相同路線相向行駛,,表示兩人離地行駛的路程(千米)與經(jīng)過的時間(小時)之間的函數(shù)關系.甲先出發(fā),兩地相距90千米.請根據(jù)這個行駛過程中的圖象填空:

1)表示甲離地的距離與時間的關系的圖象是 (填),甲的速度是 ,乙的速度是:

2)甲出發(fā)多少時間兩人恰好相距?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,點D⊙O上,∠BAD的平分線交⊙O于點C,過點CCE⊥AD于點E,過點EEH⊥AB于點H,交AC于點G,交⊙O于點F、M,連接BC.

(1)求證:EC⊙O的切線;

(2)若AG=GC,試判斷AGGH的數(shù)量關系,并說明理由;

(3)在(2)的條件下,若⊙O的半徑為4,求FM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+3x+1﹣m=0有兩個不相等的實數(shù)根.

1)求m的取值范圍;

2)若m為負整數(shù),求此時方程的根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,梯形ABCD中,ABCD,AB=14,AD= 4 , CD=7.直線l經(jīng)過A,D兩點,且sinDAB=動點P在線段AB上從點A出發(fā)以每秒2個單位的速度向點B運動,同時動點Q從點B出發(fā)以每秒5個單位的速度沿B→C→D的方向向點D運動,過點PPM垂直于AB,與折線A→D→C相交于點M,當P,Q兩點中有一點到達終點時,另一點也隨之停止運動.設點P,Q運動的時間為t秒(t>0),MPQ的面積為S.

(1)求腰BC的長;

(2)QBC上運動時,求St的函數(shù)關系式;

(3)(2)的條件下,是否存在某一時刻t,使得△MPQ的面積S是梯形ABCD面積的?若存在,請求出t的值;若不存在,請說明理由;

(4)隨著P,Q兩點的運動,當點M在線段DC上運動時,設PM的延長線與直線l相交于點N,試探究:當t為何值時,△QMN為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校與圖書館在同一條筆直道路上,甲從學校去圖書館,乙從圖書館回學校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地,兩人之間的距離(米)與時間(分鐘)之間的函數(shù)關系如圖所示,則下列說法正確的是(

①當分鐘時甲乙兩人相遇;

②甲的速度為40/分鐘;

③乙的速度為50/分鐘;

④乙到達目的地時,甲離目的地的距離為800米.

A.①②B.③④C.①②④D.①②③

查看答案和解析>>

同步練習冊答案