【題目】某學(xué)校初三進(jìn)入中考復(fù)習(xí)階段以來,為了了解同學(xué)們晚上的睡眠情況,現(xiàn)對年級部分同學(xué)進(jìn)行了調(diào)查統(tǒng)計(jì),并制成如下兩幅不完整的統(tǒng)計(jì)圖:A代表睡眠時(shí)間4小時(shí),B代表睡眠時(shí)間5小時(shí),C代表睡眠時(shí)間6小時(shí),D代表睡眠時(shí)間7小時(shí),E代表睡眠時(shí)間8小時(shí)及以上,其中扇形統(tǒng)計(jì)圖中“E”的圓心角為72°,請你結(jié)合統(tǒng)計(jì)圖所給信息解答下列問題:
(1)共抽取了 名同學(xué)進(jìn)行調(diào)查,同學(xué)們的睡眠時(shí)間的中位數(shù)是 小時(shí)左右,井將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果把睡眠時(shí)間低于7小時(shí)稱為嚴(yán)重睡眠不足,請估算全校600個(gè)初三同學(xué)中睡眠嚴(yán)重不足的人數(shù).
【答案】(1)20,6,條形統(tǒng)計(jì)圖見詳解;(2)330人
【解析】
(1)依據(jù):總數(shù)=頻數(shù)÷頻率,結(jié)合C組即可求出樣本容量. 依據(jù):頻數(shù)=總數(shù)×頻率,即可求出E組的人數(shù). A組的人數(shù)等于樣本容量減去其它各組人數(shù),即可補(bǔ)全圖形. 20個(gè)數(shù)據(jù)的中位數(shù),從條形圖中可直接找到中間兩個(gè)數(shù),求出平均數(shù)即可;
(2)睡眠時(shí)間低于7小時(shí),即A、B、C三組,先求出其頻率,再用樣本頻率估計(jì)總體的頻率.
解:(1)通過C組可得:樣本容量=6÷30%=20,所以共抽取了20名同學(xué);
因?yàn)?/span>E組所占的圓心角為72°,所以E組的頻率為72°÷360°=20%,
20×20%=4,所以E組有4人;
A組人數(shù)=20-3-6-5-4=2人,所以條形圖補(bǔ)全如下:
由圖可知第10個(gè)人和第11個(gè)人都位于C組,所以睡眠時(shí)間的中位數(shù)是6小時(shí).
(2)樣本中睡眠時(shí)間低于7小時(shí)的有2+3+6=11人,占樣本容量的11÷20=55%;
由此估計(jì),全校600個(gè)初三同學(xué)中睡眠嚴(yán)重不足的人數(shù)約為600×55%=330.
答:全校600個(gè)初三同學(xué)中睡眠嚴(yán)重不足的人數(shù)約為330人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校實(shí)施新課程改革以來,學(xué)生的學(xué)習(xí)能力有了很大提高.王老師為進(jìn)一步了解本班學(xué)生自主學(xué)習(xí)、合作交流的現(xiàn)狀,對該班部分學(xué)生進(jìn)行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖(如圖1,2).請根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)本次調(diào)查中,王老師一共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,王老師從被調(diào)查的A類和D類學(xué)生中分別選取一名學(xué)生進(jìn)行“兵教兵”互助學(xué)習(xí),請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知 兩點(diǎn)的坐標(biāo)分別為,點(diǎn)分別是直線和x軸上的動(dòng)點(diǎn),,點(diǎn)是線段的中點(diǎn),連接交軸于點(diǎn);當(dāng)⊿面積取得最小值時(shí),的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在四邊形ABCD中,對角線AC與BD相交于點(diǎn)O,,下列判斷中錯(cuò)誤的是( )
A.如果,,那么四邊形ABCD是平行四邊形
B.如果,,那么四邊形ABCD是矩形
C.如果,,那么四邊形ABCD是菱形
D.如果,AC垂直平分BD,那么四邊形ABCD是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“a2≥0”這個(gè)結(jié)論在數(shù)學(xué)中非常有用,有時(shí)我們需要將代數(shù)式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,∴(x+2)2+1≥1,∴x2+4x+5≥1.試?yán)?/span>“配方法”解決下列問題:
(1)填空:因?yàn)?/span>x2-4x+7=(x-_____)2+______,所以當(dāng)x=_____時(shí),代數(shù)式x2-4x+7有最_____(填“大”或“小”)值,這個(gè)最值為_______;
(2)比較代數(shù)式x2-2與6x-13的大小.
(3)試求2x2-3x+2的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2﹣2x+3與x軸從左到右交于A、B兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D
(1)求直線AC的解析式與點(diǎn)D的坐標(biāo);
(2)在直線AC上方的拋物線上有一點(diǎn)E,作EF∥x軸,與拋物線交于點(diǎn)F,作EM⊥x軸于M,作FN⊥x軸于N,長度為2的線段PQ在直線AC上運(yùn)動(dòng)(點(diǎn)P在點(diǎn)Q右側(cè)),當(dāng)四邊形EMNF的周長取最大值求四邊形DPQE的周長的最小值及對應(yīng)的點(diǎn)Q的坐標(biāo);
(3)如圖2,平移拋物線,使拋物線的頂點(diǎn)D在直線AD上移動(dòng),點(diǎn)D平移后的對應(yīng)點(diǎn)為D′,點(diǎn)A平移后的對應(yīng)點(diǎn)為A′,△A′D′C是否能為直角三角形?若能,請求出對應(yīng)的線段D′C的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由三個(gè)邊長分別為6、10、x的正方形組成的圖形,若線段AB將它們分成面積相等的兩部分,則x的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A1,A2,A3,…,An在y軸的正半軸上,點(diǎn)B1,B2,B3,…,Bn在二次函數(shù)y=x2位于第一象限的圖象上,若△OB1A1,△A1B2A2,△A2B3A3,…,△An-1BnAn都是等腰直角三角形,其中∠B1=∠B2=∠B3=…=∠Bn=90°,則:點(diǎn)B1的坐標(biāo)為______;線段A1A2的長為______;△An-1BnAn的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y=與一次函數(shù)y=ax+b的圖象相交于點(diǎn)A(2,6),和點(diǎn)B(4,m).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)直接寫出不等式≤ax+b的解集和△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com