【題目】已知在四邊形ABCD中,對角線AC與BD相交于點O,,下列判斷中錯誤的是( )
A.如果,,那么四邊形ABCD是平行四邊形
B.如果,,那么四邊形ABCD是矩形
C.如果,,那么四邊形ABCD是菱形
D.如果,AC垂直平分BD,那么四邊形ABCD是正方形
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們定義:如果一個等腰三角形有一條邊長是3,那么這個三角形稱作帥氣等腰三角形.已知中,,,,在所在平面內(nèi)畫一條直線,將分割成兩個三角形,若其中一個三角形是帥氣等腰三角形,則這樣的直線最多可畫( )
A.0條B.1條C.2條D.3條
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的情景對話,然后解答問題:
老師:我們定義一種三角形,兩邊的平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
小華:等邊三角形一定是奇異三角形!
小明:那直角三角形中是否存在奇異三角形呢?
問題(1):根據(jù)“奇異三角形”的定義,請你判斷小華提出的猜想:“等邊三角形一定是奇異三角形”是否正確?___________填“是”或“否”)
問題(2):已知中,兩邊長分別是5,,若這個三角形是奇異三角形,則第三邊長是_____________;
問題(3):如圖,以為斜邊分別在的兩側(cè)作直角三角形,且,若四邊形內(nèi)存在點,使得,.試說明:是奇異三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列條件不能判定四邊形ABCD是矩形的是( 。
A.∠DAB=∠ABC=∠BCD=90°B.AB∥CD,AB=CD,AB⊥AD
C.AO=BO,CO=DOD.AO=BO=CO=DO
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.
(1)求此拋物線的解析式;
(2)求證:AO=AM;
(3)探究:
①當(dāng)k=0時,直線y=kx與x軸重合,求出此時的值;
②試說明無論k取何值,的值都等于同一個常數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD與正方形CEFG,M是AF的中點,連接DM,EM.
(1)如圖1,點E在CD上,點G在BC的延長線上,請判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫出結(jié)論;
(2)如圖2,點E在DC的延長線上,點G在BC上,(1)中結(jié)論是否仍然成立?請證明你的結(jié)論;
(3)將圖1中的正方形CEFG繞點C旋轉(zhuǎn),使D,E,F(xiàn)三點在一條直線上,若AB=13,CE=5,請畫出圖形,并直接寫出MF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖點A(1,1),B(2,﹣3),點P為x軸上一點,當(dāng)|PA﹣PB|最大時,點P的坐標(biāo)為( 。
A. (﹣1,0) B. (,0) C. (,0) D. (1,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個木箱中裝有卡片共50張,這些卡片共有三種,它們分別標(biāo)有1、2、3的字樣,除此之外其他都相同,其中標(biāo)有數(shù)字2卡片的張數(shù)是標(biāo)有數(shù)字3卡片的張數(shù)的3倍少8張.已知從箱子中隨機(jī)摸出一張標(biāo)有數(shù)字1卡片的概率是.
(1)求木箱中裝有標(biāo)1的卡片張數(shù);
(2)求從箱子中隨機(jī)摸出一張標(biāo)有數(shù)字3的卡片的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有一個△ABC,頂點,,.
(1)畫出△ABC 關(guān)于 y 軸的對稱圖形(不寫畫法)
點A 關(guān)于 x 軸對稱的點坐標(biāo)為_____________;
點 B 關(guān)于 y 軸對稱的點坐標(biāo)為_____________;
點 C 關(guān)于原點對稱的點坐標(biāo)為_____________;
(2)若網(wǎng)格上的每個小正方形的邊長為 1,求△ABC 的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com