【題目】隨著“全民健身”時代的到來,健身已經(jīng)成為推廣文明生活的重要途徑,成為國民增強身體素質(zhì)和提高身體免疫力的重要方法.某校為促進學生對健身知識的了解,在七、八年級中開展了“健身知識知多少”的競賽活動.現(xiàn)從該校七、八年級中各隨機抽取名學生的競賽成績進行整理描述和分析,下面給出了部分信息:
a.七年級名學生成績?yōu)椋?/span>
b.八年級名學生成績的頻數(shù)分布直方圖如圖:
c.八年級成績在這一組的是:
d.七、八年級成績的平均數(shù)、中位數(shù)、眾數(shù)如下:
根據(jù)以上信息,回答下列問題:
(1)表中 , .
(2)一名七年級學生和一名八年級學生發(fā)生了爭論.均認為本年級的成績更好.請你寫出他們的理由:
七年級學生理由: ;
八年級學生理由: ;
(3)若該校七、八年級各有名學生.請估計該校七、八年級此次競賽成績優(yōu)秀的學生共有多少人.
【答案】(1), ;(2)理由見解析;理由見解析;(3)440人
【解析】
(1)根據(jù)中位數(shù)、眾數(shù)的意義,分別計算即可;
(2)七年級從中位數(shù)、眾數(shù)上看,而八年級則從平均數(shù)上看,說明相應的理由;
(3)分別計算七年級優(yōu)秀人數(shù),八年級優(yōu)秀人數(shù)即可.
解:(1)七年級學生成績的中位數(shù)為:,
八年級20名學生成績的出現(xiàn)次數(shù)最多的是80分,出現(xiàn)7次,因此眾數(shù)是80,
故答案為:82.5,80;
(2)雖然七年級有一名學生的成績是10分,影響了平均分,但成績的中位數(shù)和眾數(shù)均高于八年級,所以七年級成績更好;
因為八年級的平均分高于七年級的,所以八年級成績更好;
故答案為:七年級學生成績的中位數(shù)和眾數(shù)均高于八年級,所以七年級成績更好,
八年級的平均分高于七年級的,所以八年級成績更好;
(3)該校七、八年級此次競賽成績優(yōu)秀的學生約共有(人),
答:該校七、八年級各有400名學生中競賽成績優(yōu)秀(x≥80)的學生共有440人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,每個圖案均由邊長相等的黑、白兩色正方形按規(guī)律拼接而成,照此規(guī)律,第n個圖案中白色正方形比黑色正方形多________個.(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,E是AB的中點,AD//EC,∠AED=∠B.
(1)求證:△AED≌△EBC;
(2)當AB=6時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(閱讀理解)
用的矩形瓷磚,可拼得一些長度不同但寬度均為的矩形圖案.
已知長度為的所有圖案如下:
(嘗試操作)
在所給方格中(假設圖中最小方格的邊長為),嘗試畫出所有用的“矩形瓷磚”拼得的“長度是,但寬度均為”的矩形圖案示意圖.
(歸納發(fā)現(xiàn))
觀察以上結果,探究圖案個數(shù)與圖案長度之間的關系,將下表補充完整.
(規(guī)律概括)
描述一下你發(fā)現(xiàn)的規(guī)律: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,過上到點的距離為1,3,5,7,…的點作的垂線,分別與相交,得到圖所示的陰影梯形,它們的面積依次記為,,….則(1)_______________;(2)通過計算可得______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:為的直徑,為圓弧上一點,垂直于過點的切線,垂足為,的延長線交直線于點.,垂足為點.
(1)如圖1,求證:;
(2)如圖2,若,連接交于點,且時,求的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某水產(chǎn)養(yǎng)殖戶開發(fā)一個三角形狀的養(yǎng)殖區(qū)域,A、B、C三點的位置如圖所示.已知∠CAB=105°,∠B=45°,AB=100米.(參考數(shù)據(jù):≈1.41,≈1.73,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,結果保留整數(shù))
(1)求養(yǎng)殖區(qū)域△ABC的面積;
(2)養(yǎng)殖戶計劃在邊BC上選一點D,修建垂釣棧道AD,測得∠CAD=40°,求垂釣棧道AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是直線y=2x與反比例函數(shù)y=(m為常數(shù))的圖象的交點.過點A作x軸的垂線,垂足為B,且OB=2.
(1)求點A的坐標及m的值;
(2)已知點P(0,n)(0<n≤8),過點P作平行于x軸的直線,交直線y=2x于點C(x1,y1),交反比例函數(shù)y=(m為常數(shù))的圖象于點D(x2,y2),交垂線AB于點E(x3,y3),若x2<x3<x1,結合函數(shù)的圖象,直接寫出x1+x2+x3的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com