【題目】解不等式組

請結合題意填空,完成本題的解答.

(1)解不等式①,得 ;

(2)解不等式②,得 ;

(3)把不等式①和②的解集在數(shù)軸上表示出來:

(4)原不等式維的解集為

【答案】1x-1;(2x-2;(3)見詳解 ;(4))x-1

【解析】

1)去分母、移項、合并同類項、系數(shù)化為1,即可求解;

2)去括號、移項、系數(shù)化為1,即可求解;

3)把(1)和(2)求得的解集在數(shù)軸上表示出來;

4)兩個解集的公共部分就是不等式組的解集.

解:(1)不等式兩邊都乘以6,得 6+3+15x4x-2

移項,得 15x-4x-2-6-3

合并同類項,得 11x-11,

系數(shù)化為1,得 x-1

故答案為:x-1

2)去括號,得 -3x-62x+4

移項,得 -3x-2x4+6

合并同類項,得 -5x10

系數(shù)化為1,得 x-2

故答案為:x-2

3)在數(shù)軸上表示不等式的解集為:

4)原不等式組的解集為:x-1

故答案為:x-1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點DAB上,點EAC上,AB=AC,∠B=∠C

1)求證:BD=CE;

2)若BE、CD交于點F,求證:△BDF≌△CEF;

3)在(2)的條件下連接AF,求證:AF平分∠BAC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=mx2﹣4mx(m≠0)與x軸交于A,B兩點(點A在點B的左側).
(1)求點A,B的坐標及拋物線的對稱軸;
(2)過點B的直線l與y軸交于點C,且tan∠ACB=2,直接寫出直線l的表達式;
(3)如果點P(x1 , n)和點Q(x2 , n)在函數(shù)y=mx2﹣4mx(m≠0)的圖象上,PQ=2a且x1>x2 , 求x12+ax2﹣6a+2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某手機店銷售型和型手機的利潤為元,銷售型和型手機的利潤為.

(1)求每部型手機和型手機的銷售利潤;

(2)該手機店計劃一次購進兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設購進型手機部,這部手機的銷售總利潤為.

①求關于的函數(shù)關系式;

②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?

(3)(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設計出使這部手機銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程2x2﹣5x﹣3=0. x2﹣2x=x﹣2.
(1)2x2﹣5x﹣3=0.
(2)x2﹣2x=x﹣2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在斜坡的頂部有一鐵塔AB,BCD的中點,CD是水平的,在陽光的照射下,塔影DE留在坡面上.已知鐵塔底座寬CD=12 m,塔影長DE=18 m,小明和小華的身高都是1.6m,同一時刻,小明站在點E處,影子在坡面上,小華站在平地上,影子也在平地上,兩人的影長分別為2m1m,那么塔高AB為( 。

A. 24m B. 22m C. 20m D. 18m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,E是CD邊上一點,
(1)將△ADE繞點A按順時針方向旋轉,使AD、AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 , ∠AFB=∠ .
(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點,且∠PAQ=45°,試通過旋轉的方式說明:DQ+BP=PQ.
(3)在(2)題中,連接BD分別交AP、AQ于M、N,你還能用旋轉的思想說明BM2+DN2=MN2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點在正方形外,連接,過點的垂線交,若,則下列結論不正確的是(  )

A.B.到直線的距離為

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點,點,點的坐標分別為,,

1)將平移后得到,若點對應的點的坐標為,畫出平移后的;

2)畫出關于原點成中心對稱的;

3)如果以,,為頂點的四邊形是平行四邊形,請直接寫出滿足條件的所有點的坐標.

查看答案和解析>>

同步練習冊答案