【題目】如圖,在平面直角坐標系中,點,點,點的坐標分別為,

1)將平移后得到,若點對應(yīng)的點的坐標為,畫出平移后的

2)畫出關(guān)于原點成中心對稱的;

3)如果以,,為頂點的四邊形是平行四邊形,請直接寫出滿足條件的所有點的坐標.

【答案】1如圖所示;見解析;(2如圖所示;見解析;(3

【解析】

1)根據(jù)平移的方向和距離為:向下平移1個單位,向右平移5個單位,即可得到頂點A1、B1、C1的坐標,連接即可;

2)根據(jù)關(guān)于中心對稱的兩個圖形,對應(yīng)點的連線都經(jīng)過對稱中心,并且被對稱中心平分進行作圖即可;

3)分別以ABBC、AC為對角線即可判斷出點D的坐標.

1如圖所示;

2如圖所示;

3)以AB為對角線,點D的坐標為;

BC為對角線,點D的坐標為

AC為對角線,點D的坐標為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組

請結(jié)合題意填空,完成本題的解答.

(1)解不等式①,得 ;

(2)解不等式②,得 ;

(3)把不等式①和②的解集在數(shù)軸上表示出來:

(4)原不等式維的解集為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式y(tǒng)=a(x﹣4)2+h,已知點O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.
(1)當a=﹣ 時,①求h的值;
②通過計算判斷此球能否過網(wǎng).
(2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點O的水平距離為7m,離地面的高度為 m的Q處時,乙扣球成功,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)國家節(jié)能減排的號召,鼓勵市民節(jié)約用電,某市從201271日起,居民用電實行“一戶一表”的“階梯電價”,分三個檔次收費,第一檔是用電量不超過180千瓦時實行“基本電價”,第二、三檔實行“提高電價”,具體收費情況如折線圖,

請根據(jù)圖像回答下列問題;

1)當用電量是180千瓦時時,電費是_______________元;

2)第二檔的用電量范圍是________________________;

3)“基本電價”是__________________/千瓦時;

4)小明家4月份的電費是337.5元,這個月他用電__________________千瓦時?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一條弦分圓周為5:7,這條弦所對的圓周角為(
A.75°
B.105°
C.60°或120°
D.75°或105°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班有50位學(xué)生,每位學(xué)生都有一個序號,將50張編有學(xué)生序號(從1號到50號)的卡片(除序號不同外其它均相同)打亂順序重新排列,從中任意抽取1張卡片.
(1)在序號中,是20的倍數(shù)的有:20,40,能整除20的有:1,2,4,5,10(為了不重復(fù)計數(shù),20只計一次),求取到的卡片上序號是20的倍數(shù)或能整除20的概率;
(2)若規(guī)定:取到的卡片上序號是k(k是滿足1≤k≤50的整數(shù)),則序號是k的倍數(shù)或能整除k(不重復(fù)計數(shù))的學(xué)生能參加某項活動,這一規(guī)定是否公平?請說明理由;
(3)請你設(shè)計一個規(guī)定,能公平地選出10位學(xué)生參加某項活動,并說明你的規(guī)定是符合要求的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個長為4,寬為3,高為12矩形牛奶盒,從上底一角的小圓孔插入一根到達底部的直吸管,吸管在盒內(nèi)部分a的長度范圍是(牛奶盒的厚度、小圓孔的大小及吸管的粗細均忽略不計)(  )

A. 5≤a≤12B. 12≤a≤3

C. 12≤a≤4D. 12≤a≤13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:CD是經(jīng)過∠BCA頂點C的一條直線,CACBE,F分別是直線CD上兩點,且∠BEC=∠CFA=∠α

(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且EF在射線CD上.

①如圖1,若∠BCA90°,∠α90°,則BE CF;

②如圖2,若<∠BCA<180°,請?zhí)砑右粋關(guān)于∠α與∠BCA關(guān)系的條件 ,使①中的結(jié)論仍然成立,并說明理由;

(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢鲫P(guān)于EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標系中,A(m,n+2)B(m+4,n)

1)當m2n2時,

①如圖1,連接AO、BO,求三角形ABO的面積;

②如圖2,在y軸上是否存在點P,使三角形PAB的面積等于8,若存在,求P點坐標;若不存在,請說明理由;

2)如圖3,過A、B兩點作直線AB,當直線ABy軸上點Q(0,3)時,試求出m,n的關(guān)系式.

(溫情提示:(a+b)×(c+d)ac+ad+bc+bd

查看答案和解析>>

同步練習(xí)冊答案