【題目】如圖,完成下列推理,并填寫理由,如圖,∠B=∠D,∠1=∠2,求證:AB∥CD.
【證明】∵∠1=∠2(已知),
∴∥()
∴∠DAB+∠=180°()
∵∠B=∠D(已知)
∴∠DAB+∠=180°()
∴AB∥CD.
【答案】AD;BC;內(nèi)錯(cuò)角相等兩直線平行;B;兩直線平行,同旁內(nèi)角互補(bǔ);D;等量代換
【解析】證明:∵∠1=∠2(已知), ∴AD∥BC(內(nèi)錯(cuò)角相等,兩直線平行),
∴∠DAB+∠B=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),
∵∠B=∠D(已知),
∴∠DAB+∠D=180°(等量代換),
∴AB∥CD,
所以答案是:AD,BC,內(nèi)錯(cuò)角相等兩直線平行,B,兩直線平行,同旁內(nèi)角互補(bǔ),D,等量代換.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行線的判定與性質(zhì)的相關(guān)知識(shí)可以得到問題的答案,需要掌握由角的相等或互補(bǔ)(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(bǔ)(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某公司有三個(gè)住宅區(qū)可看作一點(diǎn),A,B,C各區(qū)分別住有職工30人、15人、10人,且這三個(gè)住宅區(qū)在一條大道上(A,B,C三點(diǎn)共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設(shè)一個(gè)?奎c(diǎn),為使所有的人步行到停靠點(diǎn)的路程之和最小,那么該?奎c(diǎn)的位置應(yīng)設(shè)在( )
A. 點(diǎn)A B. 點(diǎn)B
C. A,B之間 D. B,C之間
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】麗水苛公司將“麗水山耕”農(nóng)副產(chǎn)品運(yùn)往杭州市場(chǎng)進(jìn)行銷售.記汽車行駛時(shí)間為t小時(shí),平均速度為v千米/小時(shí)(汽車行駛速度不超過100千米/小時(shí)).根據(jù)經(jīng)驗(yàn),v,t的一組對(duì)應(yīng)值如下表:
v(千米/小時(shí)) | 75 | 80 | 85 | 90 | 95 |
t(小時(shí)) | 4.00 | 3.75 | 3.53 | 3.33 | 3.16 |
(1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時(shí))關(guān)于行駛時(shí)間t(小時(shí))的函數(shù)表達(dá)式;
(2)汽車上午7:30從麗水出發(fā),能否在上午10:00之前到達(dá)杭州市?請(qǐng)說明理由:
(3)若汽車到達(dá)杭州市場(chǎng)的行駛時(shí)間t滿足3.5≤t≤4,求平均速度v的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了獎(jiǎng)勵(lì)學(xué)習(xí)小組的同學(xué),黃老師花92元錢購買了鋼筆和筆記本兩種獎(jiǎng)品.已知鋼筆和筆記本的單價(jià)各為18元和8元,則買了筆記本本.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).
(1)以原點(diǎn)O為位似中心,相似比為1∶2,在y軸的左側(cè),畫出△ABC放大后的圖形△A1B1C1,并直接寫出C1點(diǎn)的坐標(biāo);
(2)若點(diǎn)D(a,b)在線段AB上,請(qǐng)直接寫出經(jīng)過(1)的變化后點(diǎn)D的對(duì)應(yīng)點(diǎn)D1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)寫出△ABC各點(diǎn)的坐標(biāo).A( , )B( , )C( , ).
(2)若把△ABC向上平移1個(gè)單位,再向右平移3個(gè)單位得△A′B′C′,在圖中畫出△A′B′C′,并寫出A′、B′、C′的坐標(biāo).A′( , )B′( , )C′( , ).
(3)連結(jié)CA′,CB′,則△CA′B′的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD的對(duì)角線相交于點(diǎn)O,點(diǎn)E在邊BC的延長(zhǎng)線上,且OE=OB,聯(lián)結(jié)DE.
(1)求證:DE⊥BE;
(2)設(shè)CD與OE交于點(diǎn)F,若OF2+FD2=OE2,CE=3,DE=4,求線段CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一邊長(zhǎng)為1的正方形OABC,邊OA、OC分別在x軸、y軸上,如果以對(duì)角線OB為邊作第二個(gè)正方形OBB1C1,再以對(duì)角線OBl為邊作第三個(gè)正方形OBlB2C2,照此規(guī)律作下去,則點(diǎn)B2018的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊不規(guī)則的四邊形地皮ABCO,各個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,6),B(-5,4),C(-7,0),O(0,0)(圖上一個(gè)單位長(zhǎng)度表示10米),現(xiàn)在想對(duì)這塊地皮進(jìn)行規(guī)劃,需要確定它的面積.
(1)求這個(gè)四邊形的面積;
(2)如果把四邊形ABCD的各個(gè)頂點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)加2,所得到的四邊形面積是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com