【題目】如圖,用同樣規(guī)格的黑白兩種正方形瓷磚鋪設正方形地面,觀察圖形并猜想填空:當黑色瓷磚為28塊時,白色瓷磚塊數(shù)為( 。

A. 27 B. 28 C. 33 D. 35

【答案】D

【解析】分析:觀察題中,三個圖形的黑色瓷磚和白塊瓷磚所拼的圖形中,黑色瓷磚和白色瓷磚的個數(shù)的規(guī)律,列方程求解即可

詳解:根據(jù)題目給出的圖,我們可以看出:
1圖中有黑色瓷磚12塊,我們把12可以改寫為3×4;白瓷磚的塊數(shù)為(1+1)2-1
2圖中有黑色瓷磚16塊,我們把16可以改寫為4×4;白瓷磚的塊數(shù)為(2+1)2-1
1圖中有黑色瓷磚20塊,我們把20可以改寫為5×4;白瓷磚的塊數(shù)為(3+1)2-1
……

第n個圖有(n+2)×4,也就是,有4n+8塊黑色的瓷磚;白瓷磚的塊數(shù)為(n+1)2-1.

所以4n+8=28

解得n=5

所以白瓷磚的塊數(shù)為(5+1)2-1=35.

故答案為:35.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一只甲蟲在5×5的方格(每小格邊長為1)上沿著網(wǎng)格線運動,它從A處出發(fā)看望BC、D處的其它甲蟲.規(guī)定:向上向右走為正,向下向左走為負,如果從AB記為:AB(+1,+4),從BA記為:BA(-1,-4).其中第一數(shù)表示左右方向,第二個數(shù)表示上下方向,那么圖中

(1)AC( , ),BD( , );

(2)若這只甲蟲的行走路線為ABCD,請計算該甲蟲走過的路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA、EC.

(1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;

(2)若點P在線段AB上.如圖2,連接AC,當P為AB的中點時,判斷△ACE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的材料

勾股定理神秘而美妙,它的證法多種多樣,下面是教材中介紹的一種拼圖證明勾股定理的方法.

先做四個全等的直角三角形,設它們的兩條直角邊分別為a,b,斜邊為c,然后按圖1的方法將它們擺成正方形.

由圖1可以得到

整理,得

所以

如果把圖1中的四個全等的直角三角形擺成圖2所示的正方形,

請你參照上述證明勾股定理的方法,完成下面的填空:

由圖2可以得到 ,

整理,得 ,

所以 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嘉淇準備完成題目:化簡:,發(fā)現(xiàn)系數(shù)印刷不清楚.

(1)他把猜成3,請你化簡:(3x2+6x+8)–(6x+5x2+2);

(2)他媽媽說:你猜錯了,我看到該題標準答案的結(jié)果是常數(shù).通過計算說明原題中是幾?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出如下結(jié)論:單項式﹣ 的系數(shù)為﹣ ,次數(shù)為2;②x=5,y=4時,代數(shù)式x2﹣y2的值為1;③化簡(x+)﹣2(x﹣)的結(jié)果是﹣x+;④若單項式ax2yn+1與﹣axmy4的和仍是單項式,則m+n=5.其中正確的結(jié)論是_____(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖像分別交x軸、y軸于A、B兩點.與反比例函數(shù)y=﹣ 的圖像交于C,D兩點,DE⊥x軸于點E.已知DE=3,AE=6.
(1)求一次函數(shù)的解析式;
(2)直接寫出不等式kx+b+ >0的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1是一個八角星形紙板,圖中有八個直角、八個相等的鈍角,每條邊都相等,如圖2將紙板沿虛線進行切割,無縫隙無重疊的拼成如圖3所示的大正方形,其面積為8+4 ,則圖3中線段AB的長為(
A.
B.2
C. ﹣1
D. +1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,E是對角線AC上一點.
(1)求證:△ABE≌△ADE;
(2)若AB=AE,∠BAE=36°,求∠CDE的度數(shù).

查看答案和解析>>

同步練習冊答案