【題目】如圖,在四邊形ABCD中,∠ABC=30°,將△DCB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°后,點(diǎn)D的對應(yīng)點(diǎn)恰好與點(diǎn)A重合,得到△ACE,若AB=3,BC=4,則BD=( 。
A.5B.5.5C.6D.7
【答案】A
【解析】
連接BE,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BCE=60°,CB=CE,BD=AE,再判斷△BCE為等邊三角形得到BE=BC=4,∠CBE=60°,從而有∠ABE=90°,然后利用勾股定理計(jì)算出AE即可.
解:連接BE,如圖,
∵△DCB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°后,點(diǎn)D的對應(yīng)點(diǎn)恰好與點(diǎn)A重合,得到△ACE,
∴∠BCE=60°,CB=CE,BD=AE,
∴△BCE為等邊三角形,
∴BE=BC=4,∠CBE=60°,
∵∠ABC=30°,
∴∠ABE=90°,
在Rt△ABE中,AE==5,
∴BD=5.
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩班分別選5名同學(xué)組成代表隊(duì)參加學(xué)校組織的“國防知識”選拔賽,現(xiàn)根據(jù)成績(滿分10分)制作如圖統(tǒng)計(jì)圖和統(tǒng)計(jì)表(尚未完成)
甲、乙兩班代表隊(duì)成績統(tǒng)計(jì)表
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | 8.5 | 8.5 | a | 0.7 |
乙班 | 8.5 | b | 10 | 1.6 |
請根據(jù)有關(guān)信息解決下列問題:
(1)填空:a= ,b= ;
(2)學(xué)校預(yù)估如果平均分能達(dá)8.5分,在參加市團(tuán)體比賽中即可以獲獎,現(xiàn)應(yīng)選派 代表隊(duì)參加市比賽;(填“甲”或“乙”)
(3)現(xiàn)將從成績滿分的3個(gè)學(xué)生中隨機(jī)抽取2人參加市國防知識個(gè)人競賽,請用樹狀圖或列表法求出恰好抽到甲,乙班各一個(gè)學(xué)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】哈市某中學(xué)為了豐富校園文化生活.校學(xué)生會決定舉辦演講、歌唱、繪畫、舞蹈四項(xiàng)比賽,要求每位學(xué)生都參加.且只能參加一項(xiàng)比賽.圍繞“你參賽的項(xiàng)目是什么?(只寫一項(xiàng))”的問題,校學(xué)生會在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查。將調(diào)查問卷適當(dāng)整理后繪制成如圖所示的不完整的條形統(tǒng)計(jì)圖.其中參加舞蹈比賽的人數(shù)與參加歌唱比賽的人數(shù)之比為1:3.請你根據(jù)以上信息回答下列問題:
(1)通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在這次調(diào)查中,一共抽取了多少名學(xué)生?
(3)如果全校有680名學(xué)生,請你估計(jì)這680名學(xué)生中參加演講比賽的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、F、C、E在一條直線上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.
(1)求證:△ABC≌△DEF;
(2)求證:AD與BE互相平分;
(3)若BF=5,FC=4,直接寫出EO的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在第二屆數(shù)字中國建設(shè)峰會召開之際,某校舉行了第二屆“掌握新技術(shù),走進(jìn)數(shù)時(shí)代”信息技術(shù)應(yīng)用大賽,將該校八年級參加競賽的學(xué)生成績統(tǒng)計(jì)后,繪制成如下統(tǒng)計(jì)圖表(不完整):
成績頻數(shù)分布統(tǒng)計(jì)表
組別 | A | B | C | D |
成績x(分) | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x<100 |
人數(shù) | 10 | m | 16 | 4 |
請觀察上面的圖表,解答下列問題:
(1)統(tǒng)計(jì)表中m= ,D組的圓心角為 °;
(2)D組的4名學(xué)生中,有2名男生和2名女生.從D組隨機(jī)抽取2名學(xué)生參加5G體驗(yàn)活動,請你畫出樹狀圖或用列表法求:
①恰好1名男生和1名女生被抽取參加5G體驗(yàn)活動的概率;
②至少1名女生被抽取參加5G體驗(yàn)活動的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD,E、F兩點(diǎn)在對角線BD上,且BE=DF,連接AE,EC,CF,FA.
(1)求證:四邊形AECF是平行四邊形.
(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接寫出圖中所有與AE相等的線段(除AE外).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國的經(jīng)濟(jì)總量已居世界第二,人民富裕了,有的家庭擁有多種車型.小紅家有A、B、C三種車型,已知3輛A型車的載重量與4輛B型車的載重量之和剛好等于2輛C型車的載重量;4輛B型車的載重量與1輛C型車的載重量之和剛好等于6輛A型車的載重量.現(xiàn)有一批貨物,原計(jì)劃用C型車10次可全部運(yùn)完,由于C型車另有運(yùn)輸任務(wù),現(xiàn)在安排A型車單獨(dú)裝運(yùn)12次,余下的貨物由B型車單獨(dú)裝運(yùn)剛好可以全部運(yùn)完,則B型車需單獨(dú)裝運(yùn)_____次(每輛車每次都滿載重量)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條筆直的公路穿過草原,公路邊有一衛(wèi)生站距公路的地方有一居民點(diǎn),、之間的距離為.一天某司機(jī)駕車從衛(wèi)生站送一批急救藥品到居民點(diǎn).已知汽車在公路上行駛的最快速度是,在草地上行駛的最快速度是.問司機(jī)應(yīng)在公路上行駛多少千米?全部所用的行車時(shí)間最短?最短時(shí)間為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
情景再現(xiàn)
我們動手操作:把正方形ABCD,從對角線剪開就分剪出兩個(gè)等腰直角三角形,把其中一個(gè)等腰三角形與正方形ABCD重新組合在一起,圖形變得豐富起來,當(dāng)圖形旋轉(zhuǎn)時(shí)問題也隨旋轉(zhuǎn)應(yīng)運(yùn)而生.
如圖①把正方形ABCD沿對角線剪開,得兩個(gè)等腰直角三角形△ACD和△BCE,
(1)問題呈現(xiàn)
我們把剪下的兩個(gè)三角形一個(gè)放大另一個(gè)縮小拼成如圖②所示
①點(diǎn)P是一動點(diǎn),若AB=3,PA=1,當(dāng)點(diǎn)P位于_ __時(shí),線段PB的值最。蝗AB=3,PA=5,當(dāng)點(diǎn)P位于__ _時(shí),線段PB有最大值.PB的最大值和最小值分別是______.
②直接寫出線段AE與DB的關(guān)系是_ ________.
(2)我們把剪下的其中一個(gè)三角形放大與正方形組合如圖③所示,點(diǎn)E在直線BC上,FM⊥CD交直線CD于M.
①當(dāng)點(diǎn)E在BC上時(shí),通過觀察、思考易證:AD=MF+CE;
②當(dāng)點(diǎn)E在BC的延長線時(shí),如圖④所示;
當(dāng)點(diǎn)E在CB的延長線上時(shí),如圖⑤所示,
線段AD、MF、CE具有怎樣的數(shù)量關(guān)系?寫出你的猜想,并選擇圖④或圖⑤證明你的猜想.
問題拓展
(3)連接EM,當(dāng)=8,=50,其他條件不變,直接寫出線段CE的長_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com