【題目】哈市某中學為了豐富校園文化生活.校學生會決定舉辦演講、歌唱、繪畫、舞蹈四項比賽,要求每位學生都參加.且只能參加一項比賽.圍繞“你參賽的項目是什么?(只寫一項)”的問題,校學生會在全校范圍內(nèi)隨機抽取部分學生進行問卷調查。將調查問卷適當整理后繪制成如圖所示的不完整的條形統(tǒng)計圖.其中參加舞蹈比賽的人數(shù)與參加歌唱比賽的人數(shù)之比為1:3.請你根據(jù)以上信息回答下列問題:
(1)通過計算補全條形統(tǒng)計圖;
(2)在這次調查中,一共抽取了多少名學生?
(3)如果全校有680名學生,請你估計這680名學生中參加演講比賽的學生有多少名?
【答案】(1)4名 圖(略)(2)40名(3)102名
估計全校680名學生中參加演講比賽的學生有l02名
【解析】(1)本題需先求出參加舞蹈比賽的人數(shù)即可補全條形統(tǒng)計圖.
(2)本題需把參加演講、歌唱、繪畫、舞蹈比賽的人數(shù)分別相加即可得出一共抽取了多少學生.
(3)本題需先求出680名學生中參加演講比賽的學生所占的比例,再乘以總人數(shù)即可得出結果.
解:(1)12×1/3=4(名);
(2)6+12+18+4=40(名),
∴在這次調查中,一共抽取了40名學生;
(3)680×6/40=102(名),
∴估計這680名學生中參加演講比賽的學生有多102名.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AB=3,AC=4,點M,Q分別是邊AB,BC上的動點(點M不與A,B重合),且MQ⊥BC,過點M作BC的平行線MN,交AC于點N,連接NQ,設BQ為x.
(1)試說明不論x為何值時,總有△QBM∽△ABC;
(2)是否存在一點Q,使得四邊形BMNQ為平行四邊形,試說明理由;
(3)當x為何值時,四邊形BMNQ的面積最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AB=6,以AB為直徑在矩形內(nèi)作半圓,與DE相切于點E(如圖),延長DE交BC于F,若BF=,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正△ABC的邊長為2,過點B的直線l⊥AB,且△ABC與△A′BC′關于直線l對稱,D為線段BC′上一動點,則AD+CD的最小值是( )
A. 4 B. 3 C. 2 D. 2+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù) y=的圖象如圖所示,則二次函數(shù) y =ax 2-2x和一次函數(shù) y=bx+a 在同一平面直角坐標系中的圖象可能是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中, , °,點D是線段BC上的動點,將線段AD繞點A順時針旋轉50°至,連接.已知AB2cm,設BD為x cm,B為y cm.
小明根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究,下面是小明的探究過程,請補充完整.(說明:解答中所填數(shù)值均保留一位小數(shù))
(1)通過取點、畫圖、測量,得到了與的幾組值,如下表:
0.5 | 0.7 | 1.0 | 1.5 | 2.0 | 2.3 | ||
1.7 | 1.3 | 1.1 | 0.7 | 0.9 | 1.1 |
(2)建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數(shù)的圖象.
(3)結合畫出的函數(shù)圖象,解決問題:
線段的長度的最小值約為__________ ;
若 ,則的長度x的取值范圍是_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠B=30°,AC=.按以下步驟作圖:
①以A為圓心,以小于AC長為半徑畫弧,分別交AC、AB于點E、D;
②分別以D、E為圓心,以大于DE長為半徑畫弧,兩弧相交于點P;
③連接AP交BC于點F.
那么BF的長為( 。
A.B.3C.2D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com