【題目】如圖1,在中,,AB=4,是邊上動點(點不與點重合),過點,交邊于點.

1)求的大;

2)若把沿著直線翻折得到,設(shè)

如圖2,當點落在斜邊上時,求的值;

如圖3,當點落在外部時,相交于點,如果,寫出的函數(shù)關(guān)系式以及定義域.

【答案】(1) (2) x=1,② ,定義域

【解析】

1)根據(jù)正弦的定義求出∠B=30°,根據(jù)平行線的性質(zhì)解答;
2)根據(jù)翻轉(zhuǎn)變換的性質(zhì),等邊三角形的判定定理得到△AQP為等邊三角形,根據(jù)等邊三角形的性質(zhì)得到AQ=QP,證明AQ=QC,計算即可;
3)作QGABG,RHABH,根據(jù)正弦的定義用x表示出QG,證明RE=RB,根據(jù)等腰三角形的性質(zhì)得到EH= y,根據(jù)正切的定義計算即可.

解:(1) RtABC中,

AB=4,

(2) 如圖2,當點落在斜邊上時;

由翻折得

是等邊三角形

x=1.

如圖3,當點落在外部時,

QGABG,RHABH
QRAB,
QG=RH
RtAQG中,QG=AQ×sinA

由翻折的性質(zhì)可知,∠PRP=CRQ=30°,
QRAB
∴∠REB=PRQ,
∴∠REB=B,
RE=RB
RHAB,

RtERH中,

整理得,y=3x,
yx的函數(shù)關(guān)系式為y=3x0x1).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小昊遇到這樣一個問題:如圖1,在ABC中,∠ACB=90°,BEAC邊上的中線,點DBC邊上,CD:BD=1:2,ADBE相交于點P,求的值.

小昊發(fā)現(xiàn),過點AAFBC,交BE的延長線于點F,通過構(gòu)造AEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).請回答的值為 

參考小昊思考問題的方法,解決問題:

如圖 3,在ABC中,∠ACB=90°,點DBC的延長線上,ADAC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3 .

(1)求的值;

(2)若CD=2,則BP=__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形 ABCD 中,E BC 邊中點.

)已知:如圖,若 AE 平分BAD,AED=90°,點 F AD 上一點,AF=AB.求證:(1ABEAFE;(2AD=AB+CD

)已知:如圖,若 AE 平分BAD,DE 平分ADC,AED=120°,點 F,G 均為 AD上的點,AF=AB,GD=CD.求證:(1GEF 為等邊三角形;(2AD=AB+ BC+CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.

(1)以直線BC為軸,把△ABC旋轉(zhuǎn)一周,求所得圓錐的底面圓周長

(2)以直線AC為軸,把△ABC旋轉(zhuǎn)一周,求所得圓錐的側(cè)面積;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知直線與反比例函數(shù)的圖像交于點A,且點A的橫坐標為1,點Bx軸正半軸上一點,且

1)求反比例函數(shù)的解析式;

2)求點B的坐標;

3)先在的內(nèi)部求作點P,使點P的兩邊OA、OB的距離相等,且PA=PB.(不寫作法,保留作圖痕跡,在圖上標注清楚點P

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABC中,∠ABC=45°,ADABC的高,點E在邊AC上,BEAD交于點F,且DF=DC.

求證;(1BF=AC;

2BEAC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明的爸爸和媽媽上山游玩,爸爸步行,媽媽乘坐纜車,相約在山頂纜車的終點會合.已知爸爸步行的路程是纜車所經(jīng)線路長的2.5倍,媽媽在爸爸出發(fā)后50分鐘才坐上纜車,纜車的平均速度為每分鐘180.圖中的折現(xiàn)反映了爸爸行走的路程(米)與時間(分鐘)之間的函數(shù)關(guān)系.

1)爸爸行走的總路程是 米,他途中休息了 分鐘;

2)當時,之間的函數(shù)關(guān)系式是 ;

3)爸爸休息之后行走的速度是每分鐘 米;

4)當媽媽到達纜車終點是,爸爸離纜車終點的路程是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)與反比例函數(shù)的圖象交于,兩點,

(1)求這兩個函數(shù)表達式

(2)寫出使反比例函數(shù)值大于一次函數(shù)值時的取值范圍。

(3)△AOB的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點,與y軸交于點C(0,).

(1)_____,點A的坐標為______,點B的坐標為_____

(2)設(shè)拋物線的頂點為M,求四邊形ABMC的面積;

查看答案和解析>>

同步練習冊答案