【題目】若中學(xué)生體質(zhì)健康綜合評定成績?yōu)?/span>x分,滿分為100分.規(guī)定:85≤x≤100為A級,75≤x<85為B級,60≤x<75為C級,x<60為D級.現(xiàn)隨機(jī)抽取某中學(xué)部分學(xué)生的綜合評定成績,整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
請根據(jù)圖中的信息,解答下列問題:
(1)在這次調(diào)查中,一共抽取了 名學(xué)生;
(2)a= %;C級對應(yīng)的圓心角為 度.
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該校共有2000名學(xué)生,請你估計(jì)該校D級學(xué)生有多少名?
【答案】(1)50;(2)24,72;(3)見解析(4)160人.
【解析】
(1)根據(jù)B級的人數(shù)和所占的百分比求出抽取的總?cè)藬?shù),
(2)再用A級的人數(shù)除以總數(shù)即可求出α;用抽取的總?cè)藬?shù)減去A、B、D的人數(shù),求出C級的人數(shù),用360度乘以C級所占的百分比即可求出扇形統(tǒng)計(jì)圖中C級對應(yīng)的圓心角的度數(shù);
(3)根據(jù)所求各組的人數(shù)補(bǔ)全統(tǒng)計(jì)圖;
(4)用D級所占的百分比乘以該校的總?cè)藬?shù),即可得出該校D級的學(xué)生數(shù).
(1)在這次調(diào)查中,一共抽取的學(xué)生數(shù)是:24÷48%=50(人),
故答案為:50;
(2)α=×100%=24%;等級為C的人數(shù)是:5012244=10(人)
扇形統(tǒng)計(jì)圖中C級對應(yīng)的圓心角為×360°=72°;
故答案為:24,72;
(3)補(bǔ)圖如下:
(4)根據(jù)題意得:2000×=160(人),
答:該校D級學(xué)生有160人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線分別交軸,軸于、兩點(diǎn),已知點(diǎn)坐標(biāo),點(diǎn)在直線上,橫坐標(biāo)為,點(diǎn)是軸正半軸上的一個(gè)動點(diǎn),連結(jié),以為直角邊在右側(cè)構(gòu)造一個(gè)等腰,且.
(1)求直線的解析式以及點(diǎn)坐標(biāo);
(2)設(shè)點(diǎn)的橫坐標(biāo)為,試用含的代數(shù)式表示點(diǎn)的坐標(biāo);
(3)如圖2,連結(jié),,請直接寫出使得周長最小時(shí),點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一座鋼結(jié)構(gòu)橋梁的框架是△ABC,水平橫梁BC長18米,中柱AD高6米,其中D是BC的中點(diǎn),且AD⊥BC.
(1)求sinB的值;
(2)現(xiàn)需要加裝支架DE、EF,其中點(diǎn)E在AB上,BE=2AE,且EF⊥BC,垂足為點(diǎn)F,求支架DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知中,分別是的中點(diǎn),求證.
利用第題的結(jié)論,解決下列問題:
如圖,在四邊形中,,點(diǎn)分別在上,點(diǎn)分別為的中點(diǎn),連接,求長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商人制成了一個(gè)如圖所示的轉(zhuǎn)盤,取名為“開心大轉(zhuǎn)盤”,游戲規(guī)定:參與者自由轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,若指針指向字母“A”,則收費(fèi)2元,若指針指向字母“B”,則獎(jiǎng)勵(lì)3元;若指針指向字母“C”,則獎(jiǎng)勵(lì)1元.一天,前來尋開心的人轉(zhuǎn)動轉(zhuǎn)盤80次,你認(rèn)為該商人是盈利的可能性大還是虧損的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,連接AC、BD.在四邊形ABCD的外部以BC為一邊作等邊三角形BCE,連接AE.
(1)求證:BD=AE;
(2)若AB=2,BC=3,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠B=30°,CD,CE分別是AB邊上的中線和高.
(1)求證:AE=ED;
(2)若AC=2,求△CDE的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com