(2012•菏澤)如果用□表示1個(gè)立方體,用表示兩個(gè)立方體疊加,用■表示三個(gè)立方體疊加,那么下面圖是由7個(gè)立方體疊成的幾何體,從正前方觀察,可畫(huà)出的平面圖形是( )
A.
B.
C.
D.
【答案】分析:找到從正面看所得到的圖形即可,注意所有看到的棱都應(yīng)表現(xiàn)在主視圖中.
解答:解:從正前方觀察,應(yīng)看到長(zhǎng)有三個(gè)立方體,且中間的為三個(gè)立方體疊加;高為兩個(gè)立方體,在中間且有兩個(gè)立方體疊加.
故選B.
點(diǎn)評(píng):此題主要考查三視圖的知識(shí)、學(xué)生的觀察能力和空間想象能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•菏澤)如圖,PA,PB是⊙O是切線(xiàn),A,B為切點(diǎn),AC是⊙O的直徑,若∠P=46°,則∠BAC=
23
23
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•菏澤)如圖,在平面直角坐標(biāo)系中放置一直角三角板,其頂點(diǎn)為A(0,1),B(2,0),O(0,0),將此三角板繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△A′B′O.
(1)一拋物線(xiàn)經(jīng)過(guò)點(diǎn)A′、B′、B,求該拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)P是在第一象限內(nèi)拋物線(xiàn)上的一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PB′A′B的面積是△A′B′O面積4倍?若存在,請(qǐng)求出P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)在(2)的條件下,試指出四邊形PB′A′B是哪種形狀的四邊形?并寫(xiě)出四邊形PB′A′B的兩條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•菏澤)某中學(xué)舉行數(shù)學(xué)知識(shí)競(jìng)賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎(jiǎng)和紀(jì)念獎(jiǎng),獲獎(jiǎng)情況已繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中所給出的信息解答下列問(wèn)題:

(1)二等獎(jiǎng)所占的比例是多少?
(2)這次數(shù)學(xué)知識(shí)競(jìng)賽獲得二等獎(jiǎng)的人數(shù)是多少?
(3)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(4)若給所有參賽學(xué)生每人發(fā)一張卡片,各自寫(xiě)上自己的名字,然后把卡片放入一個(gè)不透明的袋子里,搖勻后任意摸出一張,求摸出的卡片上是寫(xiě)有一等獎(jiǎng)學(xué)生名字的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•菏澤)(1)如圖1,∠DAB=∠CAE,請(qǐng)補(bǔ)充一個(gè)條件:
∠D=∠B或∠AED=∠C.
∠D=∠B或∠AED=∠C.
,使△ABC∽△ADE.
(2)如圖2,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,求D,E兩點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•菏澤)如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,△ABC和△DEF的頂點(diǎn)都在格點(diǎn)上,P1,P2,P3,P4,P5是△DEF邊上的5個(gè)格點(diǎn),請(qǐng)按要求完成下列各題:
(1)試證明三角形△ABC為直角三角形;
(2)判斷△ABC和△DEF是否相似,并說(shuō)明理由;
(3)畫(huà)一個(gè)三角形,使它的三個(gè)頂點(diǎn)為P1,P2,P3,P4,P5中的3個(gè)格點(diǎn)并且與△ABC相似(要求:不寫(xiě)作法與證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案